Module math

Module math 

Source
Expand description

mathematical datas

Structs§

BitwiseandConvolve
BitwiseorConvolve
BitwisexorConvolve
BlackBoxMatrixImpl
Convolve
EulerPhiTable
FormalPowerSeries
Garner
Garner’s algorithm with precomputation for fixed moduli.
GcdConvolve
LcmConvolve
Matrix
MemorizedFactorial
Polynomial
PowPrec
PrimeList
PrimeTable
QuotientArray
store with index ${\lfloor\frac{n}{i}\rfloor \mid i=1,2,\ldots,n}$
SmallModMemorizedFactorial
SparseMatrix
SubsetConvolve

Enums§

ConvolveRealFft

Traits§

BlackBoxMIntMatrix
BlackBoxMatrix
ConvolveSteps
FormalPowerSeriesCoefficient
FormalPowerSeriesCoefficientSqrt
MIntMatrix

Functions§

berlekamp_massey
bitwise_transform
check_primitive_root
discrete_logarithm
a^x ≡ b (mod n)
discrete_logarithm_prime_mod
divisors
euler_phi
extgcd
extgcd_binary
extgcd_recurse
floor_sum
Sum of Floor of Linear mod 2^64
floor_sum_i64
Sum of Floor of Linear mod 2^64
floor_sum_polynomial
$$\sum_{i=0}^{n-1}i^X\left\lfloor\frac{a\times i+b}{m}\right\rfloor^Y$$
floor_sum_polynomial_i64
$$\sum_{i=l}^{r-1}i^X\left\lfloor\frac{a\times i+b}{m}\right\rfloor^Y$$
floor_sum_range_freq
gcd
binary gcd
gcd_loop
highly_composite_number
[(hcn, #divisor)]
lagrange_interpolation
lagrange_interpolation_polynomial
lcm
miller_rabin
miller_rabin_with_br
modinv
modinv_extgcd_binary
0 < a < p, gcd(a, p) == 1, p is prime > 2
modinv_recurse
moebius
g(d) = Sigma mu(d) * f(n/d)
prime_factors
prime_factors_flatten
primitive_root
solve_linear_congruence
return: (y,z)
solve_linear_diophantine
Solve ax + by = c
solve_simultaneous_linear_congruence
return: (y,z)
with_prime_list

Type Aliases§

Convolve998244353
Fps
Fps998244353
MIntConvolve