Function lcm

Source
pub fn lcm(a: u64, b: u64) -> u64
Examples found in repository?
crates/competitive/src/math/discrete_logarithm.rs (line 413)
379fn discrete_logarithm_prime_power(a: u64, b: u64, p: u64, e: u32) -> Option<(u64, u64)> {
380    assert_ne!(p, 0);
381    assert_ne!(e, 0);
382    let n = p.pow(e);
383    assert!(a < n);
384    assert!(b < n);
385    assert_eq!(gcd(a, p), 1);
386    if p == 1 {
387        return Some((0, 1));
388    }
389    if a == 0 {
390        return if b == 0 { Some((1, 1)) } else { None };
391    }
392    if b == 0 {
393        return None;
394    }
395    if e == 1 {
396        return IC.with(|ic| unsafe { &mut *ic.get() }.discrete_logarithm(a, b, p));
397    }
398    let br = BarrettReduction::<u128>::new(n as _);
399    if p == 2 {
400        if e >= 3 {
401            if a % 4 == 1 && b % 4 != 1 {
402                return None;
403            }
404            let aa = if a % 4 == 1 { a } else { n - a };
405            let bb = if b % 4 == 1 { b } else { n - b };
406            let g = 5;
407            let ord = n / 4;
408            let x = pohlig_hellman_prime_power_order(g, aa, n, p, e - 2)?;
409            let y = pohlig_hellman_prime_power_order(g, bb, n, p, e - 2)?;
410            let t = solve_linear_congruence(x, y, ord)?;
411            match (a % 4 == 1, b % 4 == 1) {
412                (true, true) => Some(t),
413                (false, true) if t.0 % 2 == 0 => Some((t.0, lcm(t.1, 2))),
414                (false, false) if t.0 % 2 == 1 => Some((t.0, lcm(t.1, 2))),
415                (false, false) if a == b => Some((1, lcm(t.1, 2))),
416                _ => None,
417            }
418        } else if a == 1 {
419            if b == 1 { Some((0, 1)) } else { None }
420        } else {
421            assert_eq!(a, 3);
422            if b == 1 {
423                Some((0, 2))
424            } else if b == 3 {
425                Some((1, 2))
426            } else {
427                None
428            }
429        }
430    } else {
431        let ord = n - n / p;
432        let pf_ord = prime_factors(ord);
433        let g = (2..)
434            .find(|&g| check_primitive_root(g, ord, &br, &pf_ord))
435            .unwrap();
436        let mut pf_p = prime_factors(p - 1);
437        pf_p.push((p, e - 1));
438        let mut abm = vec![];
439        for (q, c) in pf_p {
440            let m = q.pow(c);
441            let d = ord / m;
442            let gg = pow(g, d, &br);
443            let aa = pow(a, d, &br);
444            let bb = pow(b, d, &br);
445            let x = pohlig_hellman_prime_power_order(gg, aa, n, q, c)?;
446            let y = pohlig_hellman_prime_power_order(gg, bb, n, q, c)?;
447            abm.push((x, y, m));
448        }
449        solve_linear_congruences(abm)
450    }
451}