Function with_prime_list

Source
pub fn with_prime_list<F>(max_n: u64, f: F)
where F: FnOnce(&PrimeList),
Examples found in repository?
crates/competitive/src/math/lcm_convolve.rs (lines 15-21)
13    pub fn zeta_transform(f: &mut [M::T]) {
14        let n = f.len().saturating_sub(1) as u64;
15        with_prime_list(n, |pl| {
16            for &p in pl.primes_lte(n).iter() {
17                for (i, j) in (0..f.len()).step_by(p as _).enumerate() {
18                    f[j] = M::operate(&f[j], &f[i]);
19                }
20            }
21        })
22    }
23}
24
25impl<G> LcmConvolve<G>
26where
27    G: Group,
28{
29    /// $$f(m) = \sum_{n \mid m}h(n)$$
30    pub fn mobius_transform(f: &mut [G::T]) {
31        let n = f.len().saturating_sub(1) as u64;
32        with_prime_list(n, |pl| {
33            for &p in pl.primes_lte(n).iter() {
34                for (i, j) in (0..f.len()).step_by(p as _).enumerate().rev() {
35                    f[j] = G::rinv_operate(&f[j], &f[i]);
36                }
37            }
38        })
39    }
More examples
Hide additional examples
crates/competitive/src/math/gcd_convolve.rs (lines 15-21)
13    pub fn zeta_transform(f: &mut [M::T]) {
14        let n = f.len().saturating_sub(1) as u64;
15        with_prime_list(n, |pl| {
16            for &p in pl.primes_lte(n).iter() {
17                for (i, j) in (0..f.len()).step_by(p as _).enumerate().rev() {
18                    f[i] = M::operate(&f[i], &f[j]);
19                }
20            }
21        })
22    }
23}
24
25impl<G> GcdConvolve<G>
26where
27    G: Group,
28{
29    /// $$f(m) = \sum_{n \mid m}h(n)$$
30    pub fn mobius_transform(f: &mut [G::T]) {
31        let n = f.len().saturating_sub(1) as u64;
32        with_prime_list(n, |pl| {
33            for &p in pl.primes_lte(n).iter() {
34                for (i, j) in (0..f.len()).step_by(p as _).enumerate() {
35                    f[i] = G::rinv_operate(&f[i], &f[j]);
36                }
37            }
38        })
39    }
crates/competitive/src/math/quotient_array.rs (lines 65-77)
61    pub fn lucy_dp<G>(mut self, mut mul_p: impl FnMut(T, u64) -> T) -> Self
62    where
63        G: Group<T = T>,
64    {
65        with_prime_list(self.isqrtn, |pl| {
66            for &p in pl.primes_lte(self.isqrtn) {
67                let k = self.quotient_index(p - 1);
68                let p2 = p * p;
69                for (i, q) in Self::index_iter(self.n, self.isqrtn).enumerate() {
70                    if q < p2 {
71                        break;
72                    }
73                    let diff = mul_p(G::rinv_operate(&self[q / p], &self.data[k]), p);
74                    G::rinv_operate_assign(&mut self.data[i], &diff);
75                }
76            }
77        });
78        self
79    }
80
81    /// convert $\sum_{i\leq n, i\text{ is prime}} f(i)$ to $\sum_{i\leq n} f(i)$
82    pub fn min_25_sieve<R>(&self, mut f: impl FnMut(u64, u32) -> T) -> Self
83    where
84        T: Clone + One,
85        R: Ring<T = T>,
86        R::Additive: Invertible,
87    {
88        let mut dp = self.clone();
89        with_prime_list(self.isqrtn, |pl| {
90            for &p in pl.primes_lte(self.isqrtn).iter().rev() {
91                let k = self.quotient_index(p);
92                for (i, q) in Self::index_iter(self.n, self.isqrtn).enumerate() {
93                    let mut pc = p;
94                    if pc * p > q {
95                        break;
96                    }
97                    let mut c = 1;
98                    while q / p >= pc {
99                        let x = R::mul(&f(p, c), &(R::sub(&dp[q / pc], &self.data[k])));
100                        let x = R::add(&x, &f(p, c + 1));
101                        dp.data[i] = R::add(&dp.data[i], &x);
102                        c += 1;
103                        pc *= p;
104                    }
105                }
106            }
107        });
108        for x in &mut dp.data {
109            *x = R::add(x, &T::one());
110        }
111        dp
112    }