competitive/math/
quotient_array.rs

1use super::{Group, Invertible, One, Ring, Zero, with_prime_list};
2use std::ops::{Index, IndexMut};
3
4/// store with index $\{\lfloor\frac{n}{i}\rfloor \mid i=1,2,\ldots,n\}$
5#[derive(Debug, Clone)]
6pub struct QuotientArray<T> {
7    n: u64,
8    isqrtn: u64,
9    data: Vec<T>,
10}
11
12impl<T> QuotientArray<T>
13where
14    T: Zero,
15{
16    pub fn zeros(n: u64) -> Self {
17        Self::from_fn(n, |_| T::zero())
18    }
19}
20
21impl<T> QuotientArray<T> {
22    pub fn index_iter(n: u64, isqrtn: u64) -> impl Iterator<Item = u64> {
23        (1..=isqrtn)
24            .map(move |i| n / i)
25            .chain((1..n / isqrtn).rev())
26    }
27
28    pub fn map<U>(&self, f: impl FnMut(&T) -> U) -> QuotientArray<U> {
29        let data = self.data.iter().map(f).collect();
30        QuotientArray {
31            n: self.n,
32            isqrtn: self.isqrtn,
33            data,
34        }
35    }
36
37    pub fn quotient_index(&self, i: u64) -> usize {
38        assert!(
39            i <= self.n,
40            "index out of bounds: the len is {} but the index is {}",
41            self.n,
42            i
43        );
44        assert_ne!(i, 0, "index out of bounds: the index is 0");
45        if i <= self.isqrtn {
46            self.data.len() - i as usize
47        } else {
48            (self.n / i) as usize - 1
49        }
50    }
51
52    pub fn from_fn(n: u64, f: impl FnMut(u64) -> T) -> Self {
53        let isqrtn = (n as f64).sqrt().floor() as u64;
54        let data = Self::index_iter(n, isqrtn).map(f).collect();
55        Self { n, isqrtn, data }
56    }
57
58    /// convert $\sum_{i\leq n} f(i)$ to $\sum_{i\leq n, i\text{ is prime}} f(i)$
59    ///
60    /// constraints: $\mathrm{mul_p}(f(x))=f(px)$
61    pub fn lucy_dp<G>(mut self, mut mul_p: impl FnMut(T, u64) -> T) -> Self
62    where
63        G: Group<T = T>,
64    {
65        with_prime_list(self.isqrtn, |pl| {
66            for &p in pl.primes_lte(self.isqrtn) {
67                let k = self.quotient_index(p - 1);
68                let p2 = p * p;
69                for (i, q) in Self::index_iter(self.n, self.isqrtn).enumerate() {
70                    if q < p2 {
71                        break;
72                    }
73                    let diff = mul_p(G::rinv_operate(&self[q / p], &self.data[k]), p);
74                    G::rinv_operate_assign(&mut self.data[i], &diff);
75                }
76            }
77        });
78        self
79    }
80
81    /// convert $\sum_{i\leq n, i\text{ is prime}} f(i)$ to $\sum_{i\leq n} f(i)$
82    pub fn min_25_sieve<R>(&self, mut f: impl FnMut(u64, u32) -> T) -> Self
83    where
84        T: Clone + One,
85        R: Ring<T = T, Additive: Invertible>,
86    {
87        let mut dp = self.clone();
88        with_prime_list(self.isqrtn, |pl| {
89            for &p in pl.primes_lte(self.isqrtn).iter().rev() {
90                let k = self.quotient_index(p);
91                for (i, q) in Self::index_iter(self.n, self.isqrtn).enumerate() {
92                    let mut pc = p;
93                    if pc * p > q {
94                        break;
95                    }
96                    let mut c = 1;
97                    while q / p >= pc {
98                        let x = R::mul(&f(p, c), &(R::sub(&dp[q / pc], &self.data[k])));
99                        let x = R::add(&x, &f(p, c + 1));
100                        dp.data[i] = R::add(&dp.data[i], &x);
101                        c += 1;
102                        pc *= p;
103                    }
104                }
105            }
106        });
107        for x in &mut dp.data {
108            *x = R::add(x, &T::one());
109        }
110        dp
111    }
112}
113
114impl<T> Index<u64> for QuotientArray<T> {
115    type Output = T;
116    fn index(&self, i: u64) -> &Self::Output {
117        unsafe { self.data.get_unchecked(self.quotient_index(i)) }
118    }
119}
120
121impl<T> IndexMut<u64> for QuotientArray<T> {
122    fn index_mut(&mut self, index: u64) -> &mut Self::Output {
123        let i = self.quotient_index(index);
124        unsafe { self.data.get_unchecked_mut(i) }
125    }
126}
127
128#[cfg(test)]
129mod tests {
130    use super::*;
131    use crate::{
132        algebra::{AddMulOperation, AdditiveOperation, ArrayOperation},
133        math::{PrimeList, PrimeTable},
134        tools::Xorshift,
135    };
136
137    #[test]
138    fn prime_count() {
139        let mut rng = Xorshift::default();
140        let pl = PrimeList::new(100_000);
141        for n in 1..=100 {
142            let n = if n <= 10 { n } else { rng.random(1..10_000) };
143            let qa = QuotientArray::from_fn(n, |i| i as i64 - 1)
144                .lucy_dp::<AdditiveOperation<_>>(|x, _p| x);
145            assert_eq!(pl.primes_lte(n).len(), qa[n] as usize);
146        }
147    }
148
149    #[test]
150    fn divisor_sum() {
151        let mut rng = Xorshift::default();
152        let pt = PrimeTable::new(10_000);
153        for n in 1..=100 {
154            let n = if n <= 10 { n } else { rng.random(1..10_000) };
155            let qa = QuotientArray::from_fn(n, |i| [i as i64, i as i64 * (i as i64 + 1) / 2])
156                .map(|[x, y]| [x - 1, y - 1])
157                .lucy_dp::<ArrayOperation<AdditiveOperation<_>, 2>>(|[x, y], p| [x, y * p as i64])
158                .map(|[x, y]| x + y)
159                .min_25_sieve::<AddMulOperation<_>>(|p, c| {
160                    let mut x = 1;
161                    let mut s = 1;
162                    for _ in 0..c {
163                        x *= p as i64;
164                        s += x;
165                    }
166                    s
167                });
168            assert_eq!(
169                (1..=n)
170                    .flat_map(|i| pt.divisors(i as _))
171                    .map(|d| d as u64)
172                    .sum::<u64>(),
173                qa[n] as u64
174            );
175        }
176    }
177}