pub struct Polynomial<T> {
pub data: Vec<T>,
}
Fields§
§data: Vec<T>
Implementations§
Source§impl<T> Polynomial<T>
impl<T> Polynomial<T>
Sourcepub fn from_vec(data: Vec<T>) -> Self
pub fn from_vec(data: Vec<T>) -> Self
Examples found in repository?
crates/competitive/src/math/polynomial.rs (line 24)
23 fn zero() -> Self {
24 Self::from_vec(Vec::new())
25 }
26 }
27 impl<T: Zero + One> One for Polynomial<T> {
28 fn one() -> Self {
29 Self::from_vec(vec![Zero::zero(), One::one()])
30 }
31 }
32 impl<T: Clone + Zero + Add<Output = T> + Mul<Output = T>> Polynomial<T> {
33 pub fn assign(&self, x: T) -> T {
34 let mut res = Zero::zero();
35 for c in self.data.iter().rev().cloned() {
36 res = res * x.clone() + c;
37 }
38 res
39 }
40 }
41 impl<T> Index<usize> for Polynomial<T> {
42 type Output = T;
43 fn index(&self, index: usize) -> &Self::Output {
44 &self.data[index]
45 }
46 }
47 impl<T> IndexMut<usize> for Polynomial<T> {
48 fn index_mut(&mut self, index: usize) -> &mut Self::Output {
49 &mut self.data[index]
50 }
51 }
52 impl<T: Copy + Add<Output = T>> Add<&Polynomial<T>> for &Polynomial<T> {
53 type Output = Polynomial<T>;
54 fn add(self, rhs: &Polynomial<T>) -> Self::Output {
55 let (x, y) = if self.length() < rhs.length() {
56 (rhs, self)
57 } else {
58 (self, rhs)
59 };
60 let mut x = x.clone();
61 for j in 0..y.length() {
62 x[j] = x[j] + y[j];
63 }
64 x
65 }
66 }
67 impl<T: Copy + Sub<Output = T>> Sub<&Polynomial<T>> for &Polynomial<T> {
68 type Output = Polynomial<T>;
69 fn sub(self, rhs: &Polynomial<T>) -> Self::Output {
70 let (x, y) = if self.length() < rhs.length() {
71 (rhs, self)
72 } else {
73 (self, rhs)
74 };
75 let mut x = x.clone();
76 for j in 0..y.length() {
77 x[j] = x[j] - y[j];
78 }
79 x
80 }
81 }
82 impl<T: Copy + Zero + Add<Output = T> + Mul<Output = T>> Mul<&Polynomial<T>> for &Polynomial<T> {
83 type Output = Polynomial<T>;
84 fn mul(self, rhs: &Polynomial<T>) -> Self::Output {
85 let mut res =
86 Polynomial::from_vec(vec![Zero::zero(); self.length() + rhs.length() - 1]);
87 for i in 0..self.length() {
88 for j in 0..rhs.length() {
89 res[i + j] = res[i + j] + self[i] * rhs[j];
90 }
91 }
92 res
93 }
94 }
95 impl<T: Copy + Zero + Sub<Output = T> + Mul<Output = T> + Div<Output = T>> Div<&Polynomial<T>>
96 for &Polynomial<T>
97 {
98 type Output = Polynomial<T>;
99 fn div(self, rhs: &Polynomial<T>) -> Self::Output {
100 let mut x = self.clone();
101 let mut res = Polynomial::from_vec(vec![]);
102 for i in (rhs.length() - 1..x.length()).rev() {
103 let t = x[i] / rhs[rhs.length() - 1];
104 res.data.push(t);
105 for j in 0..rhs.length() {
106 x[i - j] = x[i - j] - t * rhs[rhs.length() - 1 - j];
107 }
108 }
109 res.data.reverse();
110 res
111 }
Sourcepub fn length(&self) -> usize
pub fn length(&self) -> usize
Examples found in repository?
crates/competitive/src/math/polynomial.rs (line 55)
54 fn add(self, rhs: &Polynomial<T>) -> Self::Output {
55 let (x, y) = if self.length() < rhs.length() {
56 (rhs, self)
57 } else {
58 (self, rhs)
59 };
60 let mut x = x.clone();
61 for j in 0..y.length() {
62 x[j] = x[j] + y[j];
63 }
64 x
65 }
66 }
67 impl<T: Copy + Sub<Output = T>> Sub<&Polynomial<T>> for &Polynomial<T> {
68 type Output = Polynomial<T>;
69 fn sub(self, rhs: &Polynomial<T>) -> Self::Output {
70 let (x, y) = if self.length() < rhs.length() {
71 (rhs, self)
72 } else {
73 (self, rhs)
74 };
75 let mut x = x.clone();
76 for j in 0..y.length() {
77 x[j] = x[j] - y[j];
78 }
79 x
80 }
81 }
82 impl<T: Copy + Zero + Add<Output = T> + Mul<Output = T>> Mul<&Polynomial<T>> for &Polynomial<T> {
83 type Output = Polynomial<T>;
84 fn mul(self, rhs: &Polynomial<T>) -> Self::Output {
85 let mut res =
86 Polynomial::from_vec(vec![Zero::zero(); self.length() + rhs.length() - 1]);
87 for i in 0..self.length() {
88 for j in 0..rhs.length() {
89 res[i + j] = res[i + j] + self[i] * rhs[j];
90 }
91 }
92 res
93 }
94 }
95 impl<T: Copy + Zero + Sub<Output = T> + Mul<Output = T> + Div<Output = T>> Div<&Polynomial<T>>
96 for &Polynomial<T>
97 {
98 type Output = Polynomial<T>;
99 fn div(self, rhs: &Polynomial<T>) -> Self::Output {
100 let mut x = self.clone();
101 let mut res = Polynomial::from_vec(vec![]);
102 for i in (rhs.length() - 1..x.length()).rev() {
103 let t = x[i] / rhs[rhs.length() - 1];
104 res.data.push(t);
105 for j in 0..rhs.length() {
106 x[i - j] = x[i - j] - t * rhs[rhs.length() - 1 - j];
107 }
108 }
109 res.data.reverse();
110 res
111 }
112 }
113 impl<T: Copy + Zero + Sub<Output = T> + Mul<Output = T> + Div<Output = T>> Rem<&Polynomial<T>>
114 for &Polynomial<T>
115 {
116 type Output = Polynomial<T>;
117 fn rem(self, rhs: &Polynomial<T>) -> Self::Output {
118 let mut x = self.clone();
119 for i in (rhs.length() - 1..x.length()).rev() {
120 let t = x[i] / rhs[rhs.length() - 1];
121 for j in 0..rhs.length() {
122 x[i - j] = x[i - j] - t * rhs[rhs.length() - 1 - j];
123 }
124 }
125 x.data.truncate(rhs.length() - 1);
126 x
127 }
Trait Implementations§
Source§impl<T: Copy + Add<Output = T>> Add<&Polynomial<T>> for &Polynomial<T>
impl<T: Copy + Add<Output = T>> Add<&Polynomial<T>> for &Polynomial<T>
Source§type Output = Polynomial<T>
type Output = Polynomial<T>
The resulting type after applying the
+
operator.Source§impl<T: Clone> Clone for Polynomial<T>
impl<T: Clone> Clone for Polynomial<T>
Source§fn clone(&self) -> Polynomial<T>
fn clone(&self) -> Polynomial<T>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moreSource§impl<T: Debug> Debug for Polynomial<T>
impl<T: Debug> Debug for Polynomial<T>
Source§impl<T: Default> Default for Polynomial<T>
impl<T: Default> Default for Polynomial<T>
Source§fn default() -> Polynomial<T>
fn default() -> Polynomial<T>
Returns the “default value” for a type. Read more
Source§impl<T: Copy + Zero + Sub<Output = T> + Mul<Output = T> + Div<Output = T>> Div<&Polynomial<T>> for &Polynomial<T>
impl<T: Copy + Zero + Sub<Output = T> + Mul<Output = T> + Div<Output = T>> Div<&Polynomial<T>> for &Polynomial<T>
Source§type Output = Polynomial<T>
type Output = Polynomial<T>
The resulting type after applying the
/
operator.Source§impl<T> Index<usize> for Polynomial<T>
impl<T> Index<usize> for Polynomial<T>
Source§impl<T> IndexMut<usize> for Polynomial<T>
impl<T> IndexMut<usize> for Polynomial<T>
Source§impl<T: Copy + Zero + Add<Output = T> + Mul<Output = T>> Mul<&Polynomial<T>> for &Polynomial<T>
impl<T: Copy + Zero + Add<Output = T> + Mul<Output = T>> Mul<&Polynomial<T>> for &Polynomial<T>
Source§type Output = Polynomial<T>
type Output = Polynomial<T>
The resulting type after applying the
*
operator.Source§impl<T: PartialEq> PartialEq for Polynomial<T>
impl<T: PartialEq> PartialEq for Polynomial<T>
Source§impl<T: Copy + Zero + Sub<Output = T> + Mul<Output = T> + Div<Output = T>> Rem<&Polynomial<T>> for &Polynomial<T>
impl<T: Copy + Zero + Sub<Output = T> + Mul<Output = T> + Div<Output = T>> Rem<&Polynomial<T>> for &Polynomial<T>
Source§type Output = Polynomial<T>
type Output = Polynomial<T>
The resulting type after applying the
%
operator.Source§impl<T: Copy + Sub<Output = T>> Sub<&Polynomial<T>> for &Polynomial<T>
impl<T: Copy + Sub<Output = T>> Sub<&Polynomial<T>> for &Polynomial<T>
Source§type Output = Polynomial<T>
type Output = Polynomial<T>
The resulting type after applying the
-
operator.Source§impl<T> Zero for Polynomial<T>
impl<T> Zero for Polynomial<T>
impl<T: Eq> Eq for Polynomial<T>
impl<T> StructuralPartialEq for Polynomial<T>
Auto Trait Implementations§
impl<T> Freeze for Polynomial<T>
impl<T> RefUnwindSafe for Polynomial<T>where
T: RefUnwindSafe,
impl<T> Send for Polynomial<T>where
T: Send,
impl<T> Sync for Polynomial<T>where
T: Sync,
impl<T> Unpin for Polynomial<T>where
T: Unpin,
impl<T> UnwindSafe for Polynomial<T>where
T: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more