pub struct Polynomial<T> {
pub data: Vec<T>,
}Fields§
§data: Vec<T>Implementations§
Source§impl<T> Polynomial<T>
impl<T> Polynomial<T>
Sourcepub fn from_vec(data: Vec<T>) -> Self
pub fn from_vec(data: Vec<T>) -> Self
Examples found in repository?
crates/competitive/src/math/polynomial.rs (line 22)
21 fn zero() -> Self {
22 Self::from_vec(Vec::new())
23 }
24 }
25 impl<T: Zero + One> One for Polynomial<T> {
26 fn one() -> Self {
27 Self::from_vec(vec![Zero::zero(), One::one()])
28 }
29 }
30 impl<T: Clone + Zero + Add<Output = T> + Mul<Output = T>> Polynomial<T> {
31 pub fn assign(&self, x: T) -> T {
32 let mut res = Zero::zero();
33 for c in self.data.iter().rev().cloned() {
34 res = res * x.clone() + c;
35 }
36 res
37 }
38 }
39 impl<T> Index<usize> for Polynomial<T> {
40 type Output = T;
41 fn index(&self, index: usize) -> &Self::Output {
42 &self.data[index]
43 }
44 }
45 impl<T> IndexMut<usize> for Polynomial<T> {
46 fn index_mut(&mut self, index: usize) -> &mut Self::Output {
47 &mut self.data[index]
48 }
49 }
50 impl<T: Copy + Add<Output = T>> Add<&Polynomial<T>> for &Polynomial<T> {
51 type Output = Polynomial<T>;
52 fn add(self, rhs: &Polynomial<T>) -> Self::Output {
53 let (x, y) = if self.length() < rhs.length() {
54 (rhs, self)
55 } else {
56 (self, rhs)
57 };
58 let mut x = x.clone();
59 for j in 0..y.length() {
60 x[j] = x[j] + y[j];
61 }
62 x
63 }
64 }
65 impl<T: Copy + Sub<Output = T>> Sub<&Polynomial<T>> for &Polynomial<T> {
66 type Output = Polynomial<T>;
67 fn sub(self, rhs: &Polynomial<T>) -> Self::Output {
68 let (x, y) = if self.length() < rhs.length() {
69 (rhs, self)
70 } else {
71 (self, rhs)
72 };
73 let mut x = x.clone();
74 for j in 0..y.length() {
75 x[j] = x[j] - y[j];
76 }
77 x
78 }
79 }
80 impl<T: Copy + Zero + Add<Output = T> + Mul<Output = T>> Mul<&Polynomial<T>> for &Polynomial<T> {
81 type Output = Polynomial<T>;
82 fn mul(self, rhs: &Polynomial<T>) -> Self::Output {
83 let mut res =
84 Polynomial::from_vec(vec![Zero::zero(); self.length() + rhs.length() - 1]);
85 for i in 0..self.length() {
86 for j in 0..rhs.length() {
87 res[i + j] = res[i + j] + self[i] * rhs[j];
88 }
89 }
90 res
91 }
92 }
93 impl<T: Copy + Zero + Sub<Output = T> + Mul<Output = T> + Div<Output = T>> Div<&Polynomial<T>>
94 for &Polynomial<T>
95 {
96 type Output = Polynomial<T>;
97 fn div(self, rhs: &Polynomial<T>) -> Self::Output {
98 let mut x = self.clone();
99 let mut res = Polynomial::from_vec(vec![]);
100 for i in (rhs.length() - 1..x.length()).rev() {
101 let t = x[i] / rhs[rhs.length() - 1];
102 res.data.push(t);
103 for j in 0..rhs.length() {
104 x[i - j] = x[i - j] - t * rhs[rhs.length() - 1 - j];
105 }
106 }
107 res.data.reverse();
108 res
109 }Sourcepub fn length(&self) -> usize
pub fn length(&self) -> usize
Examples found in repository?
crates/competitive/src/math/polynomial.rs (line 53)
52 fn add(self, rhs: &Polynomial<T>) -> Self::Output {
53 let (x, y) = if self.length() < rhs.length() {
54 (rhs, self)
55 } else {
56 (self, rhs)
57 };
58 let mut x = x.clone();
59 for j in 0..y.length() {
60 x[j] = x[j] + y[j];
61 }
62 x
63 }
64 }
65 impl<T: Copy + Sub<Output = T>> Sub<&Polynomial<T>> for &Polynomial<T> {
66 type Output = Polynomial<T>;
67 fn sub(self, rhs: &Polynomial<T>) -> Self::Output {
68 let (x, y) = if self.length() < rhs.length() {
69 (rhs, self)
70 } else {
71 (self, rhs)
72 };
73 let mut x = x.clone();
74 for j in 0..y.length() {
75 x[j] = x[j] - y[j];
76 }
77 x
78 }
79 }
80 impl<T: Copy + Zero + Add<Output = T> + Mul<Output = T>> Mul<&Polynomial<T>> for &Polynomial<T> {
81 type Output = Polynomial<T>;
82 fn mul(self, rhs: &Polynomial<T>) -> Self::Output {
83 let mut res =
84 Polynomial::from_vec(vec![Zero::zero(); self.length() + rhs.length() - 1]);
85 for i in 0..self.length() {
86 for j in 0..rhs.length() {
87 res[i + j] = res[i + j] + self[i] * rhs[j];
88 }
89 }
90 res
91 }
92 }
93 impl<T: Copy + Zero + Sub<Output = T> + Mul<Output = T> + Div<Output = T>> Div<&Polynomial<T>>
94 for &Polynomial<T>
95 {
96 type Output = Polynomial<T>;
97 fn div(self, rhs: &Polynomial<T>) -> Self::Output {
98 let mut x = self.clone();
99 let mut res = Polynomial::from_vec(vec![]);
100 for i in (rhs.length() - 1..x.length()).rev() {
101 let t = x[i] / rhs[rhs.length() - 1];
102 res.data.push(t);
103 for j in 0..rhs.length() {
104 x[i - j] = x[i - j] - t * rhs[rhs.length() - 1 - j];
105 }
106 }
107 res.data.reverse();
108 res
109 }
110 }
111 impl<T: Copy + Zero + Sub<Output = T> + Mul<Output = T> + Div<Output = T>> Rem<&Polynomial<T>>
112 for &Polynomial<T>
113 {
114 type Output = Polynomial<T>;
115 fn rem(self, rhs: &Polynomial<T>) -> Self::Output {
116 let mut x = self.clone();
117 for i in (rhs.length() - 1..x.length()).rev() {
118 let t = x[i] / rhs[rhs.length() - 1];
119 for j in 0..rhs.length() {
120 x[i - j] = x[i - j] - t * rhs[rhs.length() - 1 - j];
121 }
122 }
123 x.data.truncate(rhs.length() - 1);
124 x
125 }Trait Implementations§
Source§impl<T: Copy + Add<Output = T>> Add<&Polynomial<T>> for &Polynomial<T>
impl<T: Copy + Add<Output = T>> Add<&Polynomial<T>> for &Polynomial<T>
Source§type Output = Polynomial<T>
type Output = Polynomial<T>
The resulting type after applying the
+ operator.Source§impl<T: Clone> Clone for Polynomial<T>
impl<T: Clone> Clone for Polynomial<T>
Source§fn clone(&self) -> Polynomial<T>
fn clone(&self) -> Polynomial<T>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<T: Debug> Debug for Polynomial<T>
impl<T: Debug> Debug for Polynomial<T>
Source§impl<T: Default> Default for Polynomial<T>
impl<T: Default> Default for Polynomial<T>
Source§fn default() -> Polynomial<T>
fn default() -> Polynomial<T>
Returns the “default value” for a type. Read more
Source§impl<T: Copy + Zero + Sub<Output = T> + Mul<Output = T> + Div<Output = T>> Div<&Polynomial<T>> for &Polynomial<T>
impl<T: Copy + Zero + Sub<Output = T> + Mul<Output = T> + Div<Output = T>> Div<&Polynomial<T>> for &Polynomial<T>
Source§type Output = Polynomial<T>
type Output = Polynomial<T>
The resulting type after applying the
/ operator.Source§impl<T> Index<usize> for Polynomial<T>
impl<T> Index<usize> for Polynomial<T>
Source§impl<T> IndexMut<usize> for Polynomial<T>
impl<T> IndexMut<usize> for Polynomial<T>
Source§impl<T: Copy + Zero + Add<Output = T> + Mul<Output = T>> Mul<&Polynomial<T>> for &Polynomial<T>
impl<T: Copy + Zero + Add<Output = T> + Mul<Output = T>> Mul<&Polynomial<T>> for &Polynomial<T>
Source§type Output = Polynomial<T>
type Output = Polynomial<T>
The resulting type after applying the
* operator.Source§impl<T: PartialEq> PartialEq for Polynomial<T>
impl<T: PartialEq> PartialEq for Polynomial<T>
Source§impl<T: Copy + Zero + Sub<Output = T> + Mul<Output = T> + Div<Output = T>> Rem<&Polynomial<T>> for &Polynomial<T>
impl<T: Copy + Zero + Sub<Output = T> + Mul<Output = T> + Div<Output = T>> Rem<&Polynomial<T>> for &Polynomial<T>
Source§type Output = Polynomial<T>
type Output = Polynomial<T>
The resulting type after applying the
% operator.Source§impl<T: Copy + Sub<Output = T>> Sub<&Polynomial<T>> for &Polynomial<T>
impl<T: Copy + Sub<Output = T>> Sub<&Polynomial<T>> for &Polynomial<T>
Source§type Output = Polynomial<T>
type Output = Polynomial<T>
The resulting type after applying the
- operator.Source§impl<T> Zero for Polynomial<T>
impl<T> Zero for Polynomial<T>
impl<T: Eq> Eq for Polynomial<T>
impl<T> StructuralPartialEq for Polynomial<T>
Auto Trait Implementations§
impl<T> Freeze for Polynomial<T>
impl<T> RefUnwindSafe for Polynomial<T>where
T: RefUnwindSafe,
impl<T> Send for Polynomial<T>where
T: Send,
impl<T> Sync for Polynomial<T>where
T: Sync,
impl<T> Unpin for Polynomial<T>where
T: Unpin,
impl<T> UnwindSafe for Polynomial<T>where
T: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more