competitive/math/
polynomial.rs1#![allow(clippy::suspicious_arithmetic_impl)]
2
3use crate::num::{One, Zero};
4
5#[codesnip::entry("Polynomial", include("zero_one"))]
6#[derive(Clone, Debug, Default, PartialEq, Eq)]
7pub struct Polynomial<T> {
8 pub data: Vec<T>,
9}
10#[codesnip::entry("Polynomial")]
11mod polynomial_impls {
12 use super::*;
13 use std::ops::{Add, Div, Index, IndexMut, Mul, Rem, Sub};
14 impl<T> Polynomial<T> {
15 pub fn from_vec(data: Vec<T>) -> Self {
16 Self { data }
17 }
18 pub fn length(&self) -> usize {
19 self.data.len()
20 }
21 }
22 impl<T> Zero for Polynomial<T> {
23 fn zero() -> Self {
24 Self::from_vec(Vec::new())
25 }
26 }
27 impl<T: Zero + One> One for Polynomial<T> {
28 fn one() -> Self {
29 Self::from_vec(vec![Zero::zero(), One::one()])
30 }
31 }
32 impl<T: Clone + Zero + Add<Output = T> + Mul<Output = T>> Polynomial<T> {
33 pub fn assign(&self, x: T) -> T {
34 let mut res = Zero::zero();
35 for c in self.data.iter().rev().cloned() {
36 res = res * x.clone() + c;
37 }
38 res
39 }
40 }
41 impl<T> Index<usize> for Polynomial<T> {
42 type Output = T;
43 fn index(&self, index: usize) -> &Self::Output {
44 &self.data[index]
45 }
46 }
47 impl<T> IndexMut<usize> for Polynomial<T> {
48 fn index_mut(&mut self, index: usize) -> &mut Self::Output {
49 &mut self.data[index]
50 }
51 }
52 impl<T: Copy + Add<Output = T>> Add<&Polynomial<T>> for &Polynomial<T> {
53 type Output = Polynomial<T>;
54 fn add(self, rhs: &Polynomial<T>) -> Self::Output {
55 let (x, y) = if self.length() < rhs.length() {
56 (rhs, self)
57 } else {
58 (self, rhs)
59 };
60 let mut x = x.clone();
61 for j in 0..y.length() {
62 x[j] = x[j] + y[j];
63 }
64 x
65 }
66 }
67 impl<T: Copy + Sub<Output = T>> Sub<&Polynomial<T>> for &Polynomial<T> {
68 type Output = Polynomial<T>;
69 fn sub(self, rhs: &Polynomial<T>) -> Self::Output {
70 let (x, y) = if self.length() < rhs.length() {
71 (rhs, self)
72 } else {
73 (self, rhs)
74 };
75 let mut x = x.clone();
76 for j in 0..y.length() {
77 x[j] = x[j] - y[j];
78 }
79 x
80 }
81 }
82 impl<T: Copy + Zero + Add<Output = T> + Mul<Output = T>> Mul<&Polynomial<T>> for &Polynomial<T> {
83 type Output = Polynomial<T>;
84 fn mul(self, rhs: &Polynomial<T>) -> Self::Output {
85 let mut res =
86 Polynomial::from_vec(vec![Zero::zero(); self.length() + rhs.length() - 1]);
87 for i in 0..self.length() {
88 for j in 0..rhs.length() {
89 res[i + j] = res[i + j] + self[i] * rhs[j];
90 }
91 }
92 res
93 }
94 }
95 impl<T: Copy + Zero + Sub<Output = T> + Mul<Output = T> + Div<Output = T>> Div<&Polynomial<T>>
96 for &Polynomial<T>
97 {
98 type Output = Polynomial<T>;
99 fn div(self, rhs: &Polynomial<T>) -> Self::Output {
100 let mut x = self.clone();
101 let mut res = Polynomial::from_vec(vec![]);
102 for i in (rhs.length() - 1..x.length()).rev() {
103 let t = x[i] / rhs[rhs.length() - 1];
104 res.data.push(t);
105 for j in 0..rhs.length() {
106 x[i - j] = x[i - j] - t * rhs[rhs.length() - 1 - j];
107 }
108 }
109 res.data.reverse();
110 res
111 }
112 }
113 impl<T: Copy + Zero + Sub<Output = T> + Mul<Output = T> + Div<Output = T>> Rem<&Polynomial<T>>
114 for &Polynomial<T>
115 {
116 type Output = Polynomial<T>;
117 fn rem(self, rhs: &Polynomial<T>) -> Self::Output {
118 let mut x = self.clone();
119 for i in (rhs.length() - 1..x.length()).rev() {
120 let t = x[i] / rhs[rhs.length() - 1];
121 for j in 0..rhs.length() {
122 x[i - j] = x[i - j] - t * rhs[rhs.length() - 1 - j];
123 }
124 }
125 x.data.truncate(rhs.length() - 1);
126 x
127 }
128 }
129 impl<T: Copy + Zero + One + Add<Output = T> + Mul<Output = T>> Polynomial<T> {
130 pub fn pow(&self, mut n: usize) -> Self {
131 let mut x = self.clone();
132 let mut res = Self::one();
133 while n > 0 {
134 if n & 1 == 1 {
135 res = &res * &x;
136 }
137 x = &x * &x;
138 n >>= 1;
139 }
140 res
141 }
142 }
143}