pub fn modinv(a: u64, m: u64) -> u64
Examples found in repository?
crates/competitive/src/math/discrete_logarithm.rs (line 26)
20fn solve_linear_congruence(a: u64, b: u64, m: u64) -> Option<(u64, u64)> {
21 let g = gcd(a, m);
22 if b % g != 0 {
23 return None;
24 }
25 let (a, b, m) = (a / g, b / g, m / g);
26 Some(((b as u128 * modinv(a, m) as u128 % m as u128) as _, m))
27}
28
29fn solve_linear_congruences<I>(abm: I) -> Option<(u64, u64)>
30where
31 I: IntoIterator<Item = (u64, u64, u64)>,
32{
33 let mut x = 0u64;
34 let mut m0 = 1u64;
35 for (a, b, m) in abm {
36 let mut b = b + m - a * x % m;
37 if b >= m {
38 b -= m;
39 }
40 let a = a * m0;
41 let g = gcd(a, m);
42 if b % g != 0 {
43 return None;
44 }
45 let (a, b, m) = (a / g, b / g, m / g);
46 x += (b as u128 * modinv(a, m) as u128 % m as u128 * m0 as u128) as u64;
47 m0 *= m;
48 }
49 Some((x, m0))
50}
51
52#[derive(Debug)]
53struct IndexCalculus {
54 primes: PrimeList,
55 br_primes: Vec<BarrettReduction<u64>>,
56 ic: HashMap<u64, IndexCalculusWithPrimitiveRoot>,
57}
58
59impl IndexCalculus {
60 fn new() -> Self {
61 Self {
62 primes: PrimeList::new(2),
63 br_primes: Default::default(),
64 ic: Default::default(),
65 }
66 }
67 fn discrete_logarithm(&mut self, a: u64, b: u64, p: u64) -> Option<(u64, u64)> {
68 let lim = ((((p as f64).log2() * (p as f64).log2().log2()).sqrt() / 2.0 + 1.).exp2() * 0.9)
69 as u64;
70 self.primes.reserve(lim);
71 let primes = self.primes.primes_lte(lim);
72 while self.br_primes.len() < primes.len() {
73 let br = BarrettReduction::<u64>::new(primes[self.br_primes.len()]);
74 self.br_primes.push(br);
75 }
76 let br_primes = &self.br_primes[..primes.len()];
77 self.ic
78 .entry(p)
79 .or_insert_with(|| IndexCalculusWithPrimitiveRoot::new(p, br_primes))
80 .discrete_logarithm(a, b, br_primes)
81 }
82}
83
84const A: [u32; 150] = [
85 62, 61, 60, 60, 59, 58, 58, 58, 57, 56, 56, 56, 56, 55, 55, 55, 54, 54, 54, 53, 53, 53, 53, 52,
86 52, 52, 52, 52, 52, 51, 50, 50, 50, 50, 49, 49, 49, 48, 48, 48, 48, 48, 47, 47, 47, 47, 47, 47,
87 47, 47, 47, 47, 47, 47, 47, 47, 45, 42, 42, 41, 41, 41, 41, 41, 41, 41, 40, 40, 40, 40, 40, 40,
88 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 38, 38, 38, 38, 38, 32, 32, 32, 32,
89 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 31, 31, 31, 31, 31,
90 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 22, 22, 22, 22,
91 22, 22, 22, 22, 22, 22,
92];
93
94fn factorize_smooth(mut x: u64, row: &mut [u64], br_primes: &[BarrettReduction<u64>]) -> bool {
95 for (j, (&br, r)) in br_primes.iter().zip(row).enumerate() {
96 *r = 0;
97 loop {
98 let (div, rem) = br.div_rem(x);
99 if rem != 0 {
100 break;
101 }
102 *r += 1;
103 x = div;
104 }
105 if j < 150 && x >= (1u64 << A[j]) {
106 break;
107 }
108 }
109 x == 1
110}
111
112#[derive(Debug)]
113struct QdrtPowPrec {
114 br_qdrt: BarrettReduction<u64>,
115 p0: Vec<u64>,
116 p1: Vec<u64>,
117 p2: Vec<u64>,
118 p3: Vec<u64>,
119}
120
121impl QdrtPowPrec {
122 fn new(a: u64, ord: u64, br: &BarrettReduction<u128>) -> Self {
123 let qdrt = (ord as f64).powf(0.25).ceil() as u64;
124 let br_qdrt = BarrettReduction::<u64>::new(qdrt);
125 let mut p0 = Vec::with_capacity(qdrt as usize);
126 let mut p1 = Vec::with_capacity(qdrt as usize);
127 let mut p2 = Vec::with_capacity(qdrt as usize);
128 let mut p3 = Vec::with_capacity(qdrt as usize);
129 let mut acc = 1u64;
130 for _ in 0..qdrt {
131 p0.push(acc);
132 acc = br.rem(acc as u128 * a as u128) as u64;
133 }
134 let a = acc;
135 acc = 1;
136 for _ in 0..qdrt {
137 p1.push(acc);
138 acc = br.rem(acc as u128 * a as u128) as u64;
139 }
140 let a = acc;
141 acc = 1;
142 for _ in 0..qdrt {
143 p2.push(acc);
144 acc = br.rem(acc as u128 * a as u128) as u64;
145 }
146 let a = acc;
147 acc = 1;
148 for _ in 0..qdrt {
149 p3.push(acc);
150 acc = br.rem(acc as u128 * a as u128) as u64;
151 }
152 Self {
153 br_qdrt,
154 p0,
155 p1,
156 p2,
157 p3,
158 }
159 }
160 fn pow(&self, mut k: u64, br: &BarrettReduction<u128>) -> u64 {
161 let (a, b) = self.br_qdrt.div_rem(k);
162 let mut x = self.p0[b as usize];
163 k = a;
164 if k > 0 {
165 let (a, b) = self.br_qdrt.div_rem(k);
166 x = br.rem(x as u128 * self.p1[b as usize] as u128) as u64;
167 k = a;
168 }
169 if k > 0 {
170 let (a, b) = self.br_qdrt.div_rem(k);
171 x = br.rem(x as u128 * self.p2[b as usize] as u128) as u64;
172 k = a;
173 }
174 if k > 0 {
175 let (_, b) = self.br_qdrt.div_rem(k);
176 x = br.rem(x as u128 * self.p3[b as usize] as u128) as u64;
177 }
178 x
179 }
180}
181
182fn index_calculus_for_primitive_root(
183 p: u64,
184 ord: u64,
185 br_primes: &[BarrettReduction<u64>],
186 prec: &QdrtPowPrec,
187) -> Vec<u64> {
188 let br_ord = BarrettReduction::<u128>::new(ord as u128);
189 let mul = |x: u64, y: u64| br_ord.rem(x as u128 * y as u128) as u64;
190 let sub = |x: u64, y: u64| if x < y { x + ord - y } else { x - y };
191
192 let pc = br_primes.len();
193 let mut mat: Vec<Vec<u64>> = vec![];
194 let mut rows: Vec<Vec<u64>> = vec![];
195
196 let mut rng = Xorshift::default();
197 let br = BarrettReduction::<u128>::new(p as u128);
198
199 for i in 0..pc {
200 for ri in 0usize.. {
201 let mut row = vec![0u64; pc + 1];
202 let mut kk = rng.rand(ord - 1) + 1;
203 let mut gkk = prec.pow(kk, &br);
204 let mut k = kk;
205 let mut gk = gkk;
206 while ri >= rows.len() {
207 row[pc] = k;
208 if factorize_smooth(gk, &mut row, br_primes) {
209 rows.push(row);
210 break;
211 }
212 if k + kk < ord {
213 k += kk;
214 gk = br.rem(gk as u128 * gkk as u128) as u64;
215 } else {
216 kk = rng.rand(ord - 1) + 1;
217 gkk = prec.pow(kk, &br);
218 k = kk;
219 gk = gkk;
220 }
221 }
222 let row = &mut rows[ri];
223 for j in 0..i {
224 if row[j] != 0 {
225 let b = mul(modinv(mat[j][j], ord), row[j]);
226 for (r, a) in row[j..].iter_mut().zip(&mat[j][j..]) {
227 *r = sub(*r, mul(*a, b));
228 }
229 }
230 assert_eq!(row[j], 0);
231 }
232 if gcd(row[i], ord) == 1 {
233 let last = rows.len() - 1;
234 rows.swap(ri, last);
235 mat.push(rows.pop().unwrap());
236 break;
237 }
238 }
239 }
240 for i in (0..pc).rev() {
241 for j in i + 1..pc {
242 mat[i][pc] = sub(mat[i][pc], mul(mat[i][j], mat[j][pc]));
243 }
244 mat[i][pc] = mul(mat[i][pc], modinv(mat[i][i], ord));
245 }
246 (0..pc).map(|i| (mat[i][pc])).collect()
247}
248
249#[derive(Debug)]
250struct IndexCalculusWithPrimitiveRoot {
251 p: u64,
252 ord: u64,
253 prec: QdrtPowPrec,
254 coeff: Vec<u64>,
255}
256
257impl IndexCalculusWithPrimitiveRoot {
258 fn new(p: u64, br_primes: &[BarrettReduction<u64>]) -> Self {
259 let ord = p - 1;
260 let g = primitive_root(p);
261 let br = BarrettReduction::<u128>::new(p as u128);
262 let prec = QdrtPowPrec::new(g, ord, &br);
263 let coeff = index_calculus_for_primitive_root(p, ord, br_primes, &prec);
264 Self {
265 p,
266 ord,
267 prec,
268 coeff,
269 }
270 }
271 fn index_calculus(&self, a: u64, br_primes: &[BarrettReduction<u64>]) -> Option<u64> {
272 let p = self.p;
273 let ord = self.ord;
274 let br = BarrettReduction::<u128>::new(p as u128);
275 let a = br.rem(a as _) as u64;
276 if a == 1 {
277 return Some(0);
278 }
279 if p == 2 {
280 return None;
281 }
282
283 let mut rng = Xorshift::new();
284 let mut row = vec![0u64; br_primes.len()];
285 let mut kk = rng.rand(ord - 1) + 1;
286 let mut gkk = self.prec.pow(kk, &br);
287 let mut k = kk;
288 let mut gk = br.rem(gkk as u128 * a as u128) as u64;
289 loop {
290 if factorize_smooth(gk, &mut row, br_primes) {
291 let mut res = ord - k;
292 for (&c, &r) in self.coeff.iter().zip(&row) {
293 for _ in 0..r {
294 res += c;
295 if res >= ord {
296 res -= ord;
297 }
298 }
299 }
300 return Some(res);
301 }
302 if k + kk < ord {
303 k += kk;
304 gk = br.rem(gk as u128 * gkk as u128) as u64;
305 } else {
306 kk = rng.rand(ord - 1) + 1;
307 gkk = self.prec.pow(kk, &br);
308 k = kk;
309 gk = br.rem(gkk as u128 * a as u128) as u64;
310 }
311 }
312 }
313 fn discrete_logarithm(
314 &self,
315 a: u64,
316 b: u64,
317 br_primes: &[BarrettReduction<u64>],
318 ) -> Option<(u64, u64)> {
319 let p = self.p;
320 let ord = self.ord;
321 let br = BarrettReduction::<u128>::new(p as u128);
322 let a = br.rem(a as _) as u64;
323 let b = br.rem(b as _) as u64;
324 if a == 0 {
325 return if b == 0 { Some((1, 1)) } else { None };
326 }
327 if b == 0 {
328 return None;
329 }
330
331 let x = self.index_calculus(a, br_primes)?;
332 let y = self.index_calculus(b, br_primes)?;
333 solve_linear_congruence(x, y, ord)
334 }
335}
336
337thread_local!(
338 static IC: UnsafeCell<IndexCalculus> = UnsafeCell::new(IndexCalculus::new());
339);
340
341pub fn discrete_logarithm_prime_mod(a: u64, b: u64, p: u64) -> Option<u64> {
342 IC.with(|ic| unsafe { &mut *ic.get() }.discrete_logarithm(a, b, p))
343 .map(|t| t.0)
344}
345
346/// a^x ≡ b (mod n), a has order p^e
347fn pohlig_hellman_prime_power_order(a: u64, b: u64, n: u64, p: u64, e: u32) -> Option<u64> {
348 let br = BarrettReduction::<u128>::new(n as u128);
349 let mul = |x: u64, y: u64| br.rem(x as u128 * y as u128) as u64;
350 let block_size = (p as f64).sqrt().ceil() as u64;
351 let mut baby = HashMap::<u64, u64>::new();
352 let g = pow(a, p.pow(e - 1), &br);
353 let mut xj = 1;
354 for j in 0..block_size {
355 baby.entry(xj).or_insert(j);
356 xj = mul(xj, g);
357 }
358 let xi = modinv(xj, n);
359 let mut t = 0u64;
360 for k in 0..e {
361 let mut h = pow(mul(modinv(pow(a, t, &br), n), b), p.pow(e - 1 - k), &br);
362 let mut ok = false;
363 for i in (0..block_size * block_size).step_by(block_size as usize) {
364 if let Some(j) = baby.get(&h) {
365 t += (i + j) * p.pow(k);
366 ok = true;
367 break;
368 }
369 h = mul(h, xi);
370 }
371 if !ok {
372 return None;
373 }
374 }
375 Some(t)
376}
377
378/// a^x ≡ b (mod p^e)
379fn discrete_logarithm_prime_power(a: u64, b: u64, p: u64, e: u32) -> Option<(u64, u64)> {
380 assert_ne!(p, 0);
381 assert_ne!(e, 0);
382 let n = p.pow(e);
383 assert!(a < n);
384 assert!(b < n);
385 assert_eq!(gcd(a, p), 1);
386 if p == 1 {
387 return Some((0, 1));
388 }
389 if a == 0 {
390 return if b == 0 { Some((1, 1)) } else { None };
391 }
392 if b == 0 {
393 return None;
394 }
395 if e == 1 {
396 return IC.with(|ic| unsafe { &mut *ic.get() }.discrete_logarithm(a, b, p));
397 }
398 let br = BarrettReduction::<u128>::new(n as _);
399 if p == 2 {
400 if e >= 3 {
401 if a % 4 == 1 && b % 4 != 1 {
402 return None;
403 }
404 let aa = if a % 4 == 1 { a } else { n - a };
405 let bb = if b % 4 == 1 { b } else { n - b };
406 let g = 5;
407 let ord = n / 4;
408 let x = pohlig_hellman_prime_power_order(g, aa, n, p, e - 2)?;
409 let y = pohlig_hellman_prime_power_order(g, bb, n, p, e - 2)?;
410 let t = solve_linear_congruence(x, y, ord)?;
411 match (a % 4 == 1, b % 4 == 1) {
412 (true, true) => Some(t),
413 (false, true) if t.0 % 2 == 0 => Some((t.0, lcm(t.1, 2))),
414 (false, false) if t.0 % 2 == 1 => Some((t.0, lcm(t.1, 2))),
415 (false, false) if a == b => Some((1, lcm(t.1, 2))),
416 _ => None,
417 }
418 } else if a == 1 {
419 if b == 1 { Some((0, 1)) } else { None }
420 } else {
421 assert_eq!(a, 3);
422 if b == 1 {
423 Some((0, 2))
424 } else if b == 3 {
425 Some((1, 2))
426 } else {
427 None
428 }
429 }
430 } else {
431 let ord = n - n / p;
432 let pf_ord = prime_factors(ord);
433 let g = (2..)
434 .find(|&g| check_primitive_root(g, ord, &br, &pf_ord))
435 .unwrap();
436 let mut pf_p = prime_factors(p - 1);
437 pf_p.push((p, e - 1));
438 let mut abm = vec![];
439 for (q, c) in pf_p {
440 let m = q.pow(c);
441 let d = ord / m;
442 let gg = pow(g, d, &br);
443 let aa = pow(a, d, &br);
444 let bb = pow(b, d, &br);
445 let x = pohlig_hellman_prime_power_order(gg, aa, n, q, c)?;
446 let y = pohlig_hellman_prime_power_order(gg, bb, n, q, c)?;
447 abm.push((x, y, m));
448 }
449 solve_linear_congruences(abm)
450 }
451}
452
453/// a^x ≡ b (mod n)
454pub fn discrete_logarithm(a: u64, b: u64, n: u64) -> Option<u64> {
455 let a = a % n;
456 let b = b % n;
457 let d = 2.max(64 - n.leading_zeros() as u64);
458 let mut pw = 1 % n;
459 for i in 0..d {
460 if pw == b {
461 return Some(i);
462 }
463 pw = (pw as u128 * a as u128 % n as u128) as u64;
464 }
465 let g = gcd(pw, n);
466 if b % g != 0 {
467 return None;
468 }
469 let n = n / g;
470 let b = (b as u128 * modinv(pw, n) as u128 % n as u128) as u64;
471 let pf = prime_factors(n);
472 let mut abm = vec![];
473 for (p, e) in pf {
474 let q = p.pow(e);
475 let x = discrete_logarithm_prime_power(a % q, b % q, p, e)?;
476 abm.push((1, x.0, x.1));
477 }
478 solve_linear_congruences(abm).map(|x| x.0 + d)
479}