pub trait Ring: SemiRing<Additive: Invertible> {
// Provided methods
fn neg(x: &Self::T) -> Self::T { ... }
fn sub(x: &Self::T, y: &Self::T) -> Self::T { ... }
fn sub_assign(x: &mut Self::T, y: &Self::T) { ... }
}Provided Methods§
Sourcefn neg(x: &Self::T) -> Self::T
fn neg(x: &Self::T) -> Self::T
additive inverse: $-$
Examples found in repository?
crates/competitive/src/math/matrix.rs (line 215)
209 pub fn determinant(&mut self) -> R::T {
210 assert_eq!(self.shape.0, self.shape.1);
211 let mut neg = false;
212 self.row_reduction_with(false, |r, p, _| neg ^= r != p);
213 let mut d = R::one();
214 if neg {
215 d = R::neg(&d);
216 }
217 for i in 0..self.shape.0 {
218 R::mul_assign(&mut d, &self[i][i]);
219 }
220 d
221 }
222
223 pub fn solve_system_of_linear_equations(
224 &self,
225 b: &[R::T],
226 ) -> Option<SystemOfLinearEquationsSolution<R>> {
227 assert_eq!(self.shape.0, b.len());
228 let (n, m) = self.shape;
229 let mut c = Matrix::<R>::zeros((n, m + 1));
230 for i in 0..n {
231 c[i][..m].clone_from_slice(&self[i]);
232 c[i][m] = b[i].clone();
233 }
234 let mut reduced = vec![!0; m + 1];
235 c.row_reduction_with(true, |r, _, c| reduced[c] = r);
236 if reduced[m] != !0 {
237 return None;
238 }
239 let mut particular = vec![R::zero(); m];
240 let mut basis = vec![];
241 for j in 0..m {
242 if reduced[j] != !0 {
243 particular[j] = c[reduced[j]][m].clone();
244 } else {
245 let mut v = vec![R::zero(); m];
246 v[j] = R::one();
247 for i in 0..m {
248 if reduced[i] != !0 {
249 R::sub_assign(&mut v[i], &c[reduced[i]][j]);
250 }
251 }
252 basis.push(v);
253 }
254 }
255 Some(SystemOfLinearEquationsSolution { particular, basis })
256 }
257
258 pub fn inverse(&self) -> Option<Matrix<R>> {
259 assert_eq!(self.shape.0, self.shape.1);
260 let n = self.shape.0;
261 let mut c = Matrix::<R>::zeros((n, n * 2));
262 for i in 0..n {
263 c[i][..n].clone_from_slice(&self[i]);
264 c[i][n + i] = R::one();
265 }
266 c.row_reduction(true);
267 if (0..n).any(|i| R::is_zero(&c[i][i])) {
268 None
269 } else {
270 Some(Self::from_vec(
271 c.data.into_iter().map(|r| r[n..].to_vec()).collect(),
272 ))
273 }
274 }
275
276 pub fn characteristic_polynomial(&mut self) -> Vec<R::T> {
277 let n = self.shape.0;
278 if n == 0 {
279 return vec![R::one()];
280 }
281 assert!(self.data.iter().all(|a| a.len() == n));
282 for j in 0..(n - 1) {
283 if let Some(x) = ((j + 1)..n).find(|&x| !R::is_zero(&self[x][j])) {
284 self.data.swap(j + 1, x);
285 self.data.iter_mut().for_each(|a| a.swap(j + 1, x));
286 let inv = R::inv(&self[j + 1][j]);
287 let mut v = vec![];
288 let src = std::mem::take(&mut self[j + 1]);
289 for a in self.data[(j + 2)..].iter_mut() {
290 let mul = R::mul(&a[j], &inv);
291 for (a, src) in a[j..].iter_mut().zip(src[j..].iter()) {
292 R::sub_assign(a, &R::mul(&mul, src));
293 }
294 v.push(mul);
295 }
296 self[j + 1] = src;
297 for a in self.data.iter_mut() {
298 let v = a[(j + 2)..]
299 .iter()
300 .zip(v.iter())
301 .fold(R::zero(), |s, a| R::add(&s, &R::mul(a.0, a.1)));
302 R::add_assign(&mut a[j + 1], &v);
303 }
304 }
305 }
306 let mut dp = vec![vec![R::one()]];
307 for i in 0..n {
308 let mut next = vec![R::zero(); i + 2];
309 for (j, dp) in dp[i].iter().enumerate() {
310 R::sub_assign(&mut next[j], &R::mul(dp, &self[i][i]));
311 R::add_assign(&mut next[j + 1], dp);
312 }
313 let mut mul = R::one();
314 for j in (0..i).rev() {
315 mul = R::mul(&mul, &self[j + 1][j]);
316 let c = R::mul(&mul, &self[j][i]);
317 for (next, dp) in next.iter_mut().zip(dp[j].iter()) {
318 R::sub_assign(next, &R::mul(&c, dp));
319 }
320 }
321 dp.push(next);
322 }
323 dp.pop().unwrap()
324 }
325}
326
327impl<R> Index<usize> for Matrix<R>
328where
329 R: SemiRing,
330{
331 type Output = Vec<R::T>;
332 fn index(&self, index: usize) -> &Self::Output {
333 &self.data[index]
334 }
335}
336
337impl<R> IndexMut<usize> for Matrix<R>
338where
339 R: SemiRing,
340{
341 fn index_mut(&mut self, index: usize) -> &mut Self::Output {
342 &mut self.data[index]
343 }
344}
345
346impl<R> Index<(usize, usize)> for Matrix<R>
347where
348 R: SemiRing,
349{
350 type Output = R::T;
351 fn index(&self, index: (usize, usize)) -> &Self::Output {
352 &self.data[index.0][index.1]
353 }
354}
355
356impl<R> IndexMut<(usize, usize)> for Matrix<R>
357where
358 R: SemiRing,
359{
360 fn index_mut(&mut self, index: (usize, usize)) -> &mut Self::Output {
361 &mut self.data[index.0][index.1]
362 }
363}
364
365macro_rules! impl_matrix_pairwise_binop {
366 ($imp:ident, $method:ident, $imp_assign:ident, $method_assign:ident $(where [$($clauses:tt)*])?) => {
367 impl<R> $imp_assign for Matrix<R>
368 where
369 R: SemiRing,
370 $($($clauses)*)?
371 {
372 fn $method_assign(&mut self, rhs: Self) {
373 self.pairwise_assign(&rhs, |a, b| R::$method_assign(a, b));
374 }
375 }
376 impl<R> $imp_assign<&Matrix<R>> for Matrix<R>
377 where
378 R: SemiRing,
379 $($($clauses)*)?
380 {
381 fn $method_assign(&mut self, rhs: &Self) {
382 self.pairwise_assign(rhs, |a, b| R::$method_assign(a, b));
383 }
384 }
385 impl<R> $imp for Matrix<R>
386 where
387 R: SemiRing,
388 $($($clauses)*)?
389 {
390 type Output = Matrix<R>;
391 fn $method(mut self, rhs: Self) -> Self::Output {
392 self.$method_assign(rhs);
393 self
394 }
395 }
396 impl<R> $imp<&Matrix<R>> for Matrix<R>
397 where
398 R: SemiRing,
399 $($($clauses)*)?
400 {
401 type Output = Matrix<R>;
402 fn $method(mut self, rhs: &Self) -> Self::Output {
403 self.$method_assign(rhs);
404 self
405 }
406 }
407 impl<R> $imp<Matrix<R>> for &Matrix<R>
408 where
409 R: SemiRing,
410 $($($clauses)*)?
411 {
412 type Output = Matrix<R>;
413 fn $method(self, mut rhs: Matrix<R>) -> Self::Output {
414 rhs.pairwise_assign(self, |a, b| *a = R::$method(b, a));
415 rhs
416 }
417 }
418 impl<R> $imp<&Matrix<R>> for &Matrix<R>
419 where
420 R: SemiRing,
421 $($($clauses)*)?
422 {
423 type Output = Matrix<R>;
424 fn $method(self, rhs: &Matrix<R>) -> Self::Output {
425 let mut this = self.clone();
426 this.$method_assign(rhs);
427 this
428 }
429 }
430 };
431}
432
433impl_matrix_pairwise_binop!(Add, add, AddAssign, add_assign);
434impl_matrix_pairwise_binop!(Sub, sub, SubAssign, sub_assign where [R: SemiRing<Additive: Invertible>]);
435
436impl<R> Mul for Matrix<R>
437where
438 R: SemiRing,
439{
440 type Output = Matrix<R>;
441 fn mul(self, rhs: Self) -> Self::Output {
442 (&self).mul(&rhs)
443 }
444}
445impl<R> Mul<&Matrix<R>> for Matrix<R>
446where
447 R: SemiRing,
448{
449 type Output = Matrix<R>;
450 fn mul(self, rhs: &Matrix<R>) -> Self::Output {
451 (&self).mul(rhs)
452 }
453}
454impl<R> Mul<Matrix<R>> for &Matrix<R>
455where
456 R: SemiRing,
457{
458 type Output = Matrix<R>;
459 fn mul(self, rhs: Matrix<R>) -> Self::Output {
460 self.mul(&rhs)
461 }
462}
463impl<R> Mul<&Matrix<R>> for &Matrix<R>
464where
465 R: SemiRing,
466{
467 type Output = Matrix<R>;
468 fn mul(self, rhs: &Matrix<R>) -> Self::Output {
469 assert_eq!(self.shape.1, rhs.shape.0);
470 let mut res = Matrix::zeros((self.shape.0, rhs.shape.1));
471 for i in 0..self.shape.0 {
472 for k in 0..self.shape.1 {
473 for j in 0..rhs.shape.1 {
474 R::add_assign(&mut res[i][j], &R::mul(&self[i][k], &rhs[k][j]));
475 }
476 }
477 }
478 res
479 }
480}
481
482impl<R> MulAssign<&R::T> for Matrix<R>
483where
484 R: SemiRing,
485{
486 fn mul_assign(&mut self, rhs: &R::T) {
487 for i in 0..self.shape.0 {
488 for j in 0..self.shape.1 {
489 R::mul_assign(&mut self[(i, j)], rhs);
490 }
491 }
492 }
493}
494
495impl<R> Neg for Matrix<R>
496where
497 R: SemiRing<Additive: Invertible>,
498{
499 type Output = Self;
500
501 fn neg(self) -> Self::Output {
502 self.map(|x| R::neg(x))
503 }
504}
505
506impl<R> Neg for &Matrix<R>
507where
508 R: SemiRing<Additive: Invertible>,
509{
510 type Output = Matrix<R>;
511
512 fn neg(self) -> Self::Output {
513 self.map(|x| R::neg(x))
514 }More examples
crates/competitive/src/math/floor_sum.rs (line 318)
300pub fn floor_sum_polynomial_i64<T, const X: usize, const Y: usize>(
301 l: i64,
302 r: i64,
303 a: i64,
304 b: i64,
305 m: u64,
306) -> [[T; Y]; X]
307where
308 T: Clone + Zero + One + Add<Output = T> + Mul<Output = T>,
309 AddMulOperation<T>: SemiRing<T = T, Additive: Invertible>,
310{
311 assert!(l <= r);
312 assert!(m > 0);
313
314 if a < 0 {
315 let mut ans = floor_sum_polynomial_i64::<T, X, Y>(-r + 1, -l + 1, -a, b, m);
316 for ans in ans.iter_mut().skip(1).step_by(2) {
317 for ans in ans.iter_mut() {
318 *ans = AddMulOperation::<T>::neg(ans);
319 }
320 }
321 return ans;
322 }
323
324 let add_x = l;
325 let n = (r - l) as u64;
326 let b = a * add_x + b;
327
328 let add_y = b.div_euclid(m as i64);
329 let b = b.rem_euclid(m as i64);
330 assert!(a >= 0);
331 assert!(b >= 0);
332 let data = floor_monoid_product::<FloorSum<AddMulOperation<T>, X, Y>>(
333 FloorSum::<AddMulOperation<T>, X, Y>::to_x(),
334 FloorSum::<AddMulOperation<T>, X, Y>::to_y(),
335 n,
336 a as u64,
337 b as u64,
338 m,
339 );
340
341 let offset = FloorSum::<AddMulOperation<T>, X, Y>::offset(add_x, add_y);
342 FloorSum::<AddMulOperation<T>, X, Y>::operate(&offset, &data).dp
343}crates/competitive/src/algorithm/automata_learning.rs (line 562)
523 pub fn train_sample(&mut self, sample: &[usize]) -> bool {
524 let Some((prefix, suffix)) = self.split_sample(sample) else {
525 return false;
526 };
527 self.prefixes.push(prefix);
528 self.suffixes.push(suffix);
529 let n = self.inv_h.shape.0;
530 let prefix = &self.prefixes[n];
531 let suffix = &self.suffixes[n];
532 let u = Matrix::<F>::new_with((n, 1), |i, _| {
533 self.automaton.behavior(
534 self.prefixes[i]
535 .iter()
536 .cloned()
537 .chain(suffix.iter().cloned()),
538 )
539 });
540 let v = Matrix::<F>::new_with((1, n), |_, j| {
541 self.automaton.behavior(
542 prefix
543 .iter()
544 .cloned()
545 .chain(self.suffixes[j].iter().cloned()),
546 )
547 });
548 let w = Matrix::<F>::new_with((1, 1), |_, _| {
549 self.automaton
550 .behavior(prefix.iter().cloned().chain(suffix.iter().cloned()))
551 });
552 let t = &self.inv_h * &u;
553 let s = &v * &self.inv_h;
554 let d = F::inv(&(&w - &(&v * &t))[0][0]);
555 let dh = &t * &s;
556 for i in 0..n {
557 for j in 0..n {
558 F::add_assign(&mut self.inv_h[i][j], &F::mul(&dh[i][j], &d));
559 }
560 }
561 self.inv_h
562 .add_col_with(|i, _| F::neg(&F::mul(&t[i][0], &d)));
563 self.inv_h.add_row_with(|_, j| {
564 if j != n {
565 F::neg(&F::mul(&s[0][j], &d))
566 } else {
567 d.clone()
568 }
569 });
570
571 for (x, transition) in self.wfa.transitions.iter_mut().enumerate() {
572 let b = &(&self.nh[x] * &t) * &s;
573 for i in 0..n {
574 for j in 0..n {
575 F::add_assign(&mut transition[i][j], &F::mul(&b[i][j], &d));
576 }
577 }
578 }
579 for (x, nh) in self.nh.iter_mut().enumerate() {
580 nh.add_col_with(|i, j| {
581 self.automaton.behavior(
582 self.prefixes[i]
583 .iter()
584 .cloned()
585 .chain([x])
586 .chain(self.suffixes[j].iter().cloned()),
587 )
588 });
589 nh.add_row_with(|i, j| {
590 self.automaton.behavior(
591 self.prefixes[i]
592 .iter()
593 .cloned()
594 .chain([x])
595 .chain(self.suffixes[j].iter().cloned()),
596 )
597 });
598 }
599 self.wfa
600 .initial_weights
601 .add_col_with(|_, _| if n == 0 { F::one() } else { F::zero() });
602 self.wfa
603 .final_weights
604 .add_row_with(|_, _| self.automaton.behavior(prefix.iter().cloned()));
605 for (x, transition) in self.wfa.transitions.iter_mut().enumerate() {
606 transition.add_col_with(|_, _| F::zero());
607 transition.add_row_with(|_, _| F::zero());
608 for i in 0..=n {
609 for j in 0..=n {
610 if i == n || j == n {
611 for k in 0..=n {
612 if i != n && j != n && k != n {
613 continue;
614 }
615 F::add_assign(
616 &mut transition[i][k],
617 &F::mul(&self.nh[x][i][j], &self.inv_h[j][k]),
618 );
619 }
620 } else {
621 let k = n;
622 F::add_assign(
623 &mut transition[i][k],
624 &F::mul(&self.nh[x][i][j], &self.inv_h[j][k]),
625 );
626 }
627 }
628 }
629 }
630 true
631 }Sourcefn sub(x: &Self::T, y: &Self::T) -> Self::T
fn sub(x: &Self::T, y: &Self::T) -> Self::T
additive right inversed operaion: $-$
Examples found in repository?
More examples
crates/competitive/src/math/quotient_array.rs (line 98)
82 pub fn min_25_sieve<R>(&self, mut f: impl FnMut(u64, u32) -> T) -> Self
83 where
84 T: Clone + One,
85 R: Ring<T = T, Additive: Invertible>,
86 {
87 let mut dp = self.clone();
88 with_prime_list(self.isqrtn, |pl| {
89 for &p in pl.primes_lte(self.isqrtn).iter().rev() {
90 let k = self.quotient_index(p);
91 for (i, q) in Self::index_iter(self.n, self.isqrtn).enumerate() {
92 let mut pc = p;
93 if pc * p > q {
94 break;
95 }
96 let mut c = 1;
97 while q / p >= pc {
98 let x = R::mul(&f(p, c), &(R::sub(&dp[q / pc], &self.data[k])));
99 let x = R::add(&x, &f(p, c + 1));
100 dp.data[i] = R::add(&dp.data[i], &x);
101 c += 1;
102 pc *= p;
103 }
104 }
105 }
106 });
107 for x in &mut dp.data {
108 *x = R::add(x, &T::one());
109 }
110 dp
111 }Sourcefn sub_assign(x: &mut Self::T, y: &Self::T)
fn sub_assign(x: &mut Self::T, y: &Self::T)
Examples found in repository?
crates/competitive/src/math/matrix.rs (line 190)
159 pub fn row_reduction_with<F>(&mut self, normalize: bool, mut f: F)
160 where
161 F: FnMut(usize, usize, usize),
162 {
163 let (n, m) = self.shape;
164 let mut c = 0;
165 for r in 0..n {
166 loop {
167 if c >= m {
168 return;
169 }
170 if let Some(pivot) = (r..n).find(|&p| !R::is_zero(&self[p][c])) {
171 f(r, pivot, c);
172 self.data.swap(r, pivot);
173 break;
174 };
175 c += 1;
176 }
177 let d = R::inv(&self[r][c]);
178 if normalize {
179 for j in c..m {
180 R::mul_assign(&mut self[r][j], &d);
181 }
182 }
183 for i in (0..n).filter(|&i| i != r) {
184 let mut e = self[i][c].clone();
185 if !normalize {
186 R::mul_assign(&mut e, &d);
187 }
188 for j in c..m {
189 let e = R::mul(&e, &self[r][j]);
190 R::sub_assign(&mut self[i][j], &e);
191 }
192 }
193 c += 1;
194 }
195 }
196
197 pub fn row_reduction(&mut self, normalize: bool) {
198 self.row_reduction_with(normalize, |_, _, _| {});
199 }
200
201 pub fn rank(&mut self) -> usize {
202 let n = self.shape.0;
203 self.row_reduction(false);
204 (0..n)
205 .filter(|&i| !self.data[i].iter().all(|x| R::is_zero(x)))
206 .count()
207 }
208
209 pub fn determinant(&mut self) -> R::T {
210 assert_eq!(self.shape.0, self.shape.1);
211 let mut neg = false;
212 self.row_reduction_with(false, |r, p, _| neg ^= r != p);
213 let mut d = R::one();
214 if neg {
215 d = R::neg(&d);
216 }
217 for i in 0..self.shape.0 {
218 R::mul_assign(&mut d, &self[i][i]);
219 }
220 d
221 }
222
223 pub fn solve_system_of_linear_equations(
224 &self,
225 b: &[R::T],
226 ) -> Option<SystemOfLinearEquationsSolution<R>> {
227 assert_eq!(self.shape.0, b.len());
228 let (n, m) = self.shape;
229 let mut c = Matrix::<R>::zeros((n, m + 1));
230 for i in 0..n {
231 c[i][..m].clone_from_slice(&self[i]);
232 c[i][m] = b[i].clone();
233 }
234 let mut reduced = vec![!0; m + 1];
235 c.row_reduction_with(true, |r, _, c| reduced[c] = r);
236 if reduced[m] != !0 {
237 return None;
238 }
239 let mut particular = vec![R::zero(); m];
240 let mut basis = vec![];
241 for j in 0..m {
242 if reduced[j] != !0 {
243 particular[j] = c[reduced[j]][m].clone();
244 } else {
245 let mut v = vec![R::zero(); m];
246 v[j] = R::one();
247 for i in 0..m {
248 if reduced[i] != !0 {
249 R::sub_assign(&mut v[i], &c[reduced[i]][j]);
250 }
251 }
252 basis.push(v);
253 }
254 }
255 Some(SystemOfLinearEquationsSolution { particular, basis })
256 }
257
258 pub fn inverse(&self) -> Option<Matrix<R>> {
259 assert_eq!(self.shape.0, self.shape.1);
260 let n = self.shape.0;
261 let mut c = Matrix::<R>::zeros((n, n * 2));
262 for i in 0..n {
263 c[i][..n].clone_from_slice(&self[i]);
264 c[i][n + i] = R::one();
265 }
266 c.row_reduction(true);
267 if (0..n).any(|i| R::is_zero(&c[i][i])) {
268 None
269 } else {
270 Some(Self::from_vec(
271 c.data.into_iter().map(|r| r[n..].to_vec()).collect(),
272 ))
273 }
274 }
275
276 pub fn characteristic_polynomial(&mut self) -> Vec<R::T> {
277 let n = self.shape.0;
278 if n == 0 {
279 return vec![R::one()];
280 }
281 assert!(self.data.iter().all(|a| a.len() == n));
282 for j in 0..(n - 1) {
283 if let Some(x) = ((j + 1)..n).find(|&x| !R::is_zero(&self[x][j])) {
284 self.data.swap(j + 1, x);
285 self.data.iter_mut().for_each(|a| a.swap(j + 1, x));
286 let inv = R::inv(&self[j + 1][j]);
287 let mut v = vec![];
288 let src = std::mem::take(&mut self[j + 1]);
289 for a in self.data[(j + 2)..].iter_mut() {
290 let mul = R::mul(&a[j], &inv);
291 for (a, src) in a[j..].iter_mut().zip(src[j..].iter()) {
292 R::sub_assign(a, &R::mul(&mul, src));
293 }
294 v.push(mul);
295 }
296 self[j + 1] = src;
297 for a in self.data.iter_mut() {
298 let v = a[(j + 2)..]
299 .iter()
300 .zip(v.iter())
301 .fold(R::zero(), |s, a| R::add(&s, &R::mul(a.0, a.1)));
302 R::add_assign(&mut a[j + 1], &v);
303 }
304 }
305 }
306 let mut dp = vec![vec![R::one()]];
307 for i in 0..n {
308 let mut next = vec![R::zero(); i + 2];
309 for (j, dp) in dp[i].iter().enumerate() {
310 R::sub_assign(&mut next[j], &R::mul(dp, &self[i][i]));
311 R::add_assign(&mut next[j + 1], dp);
312 }
313 let mut mul = R::one();
314 for j in (0..i).rev() {
315 mul = R::mul(&mul, &self[j + 1][j]);
316 let c = R::mul(&mul, &self[j][i]);
317 for (next, dp) in next.iter_mut().zip(dp[j].iter()) {
318 R::sub_assign(next, &R::mul(&c, dp));
319 }
320 }
321 dp.push(next);
322 }
323 dp.pop().unwrap()
324 }Dyn Compatibility§
This trait is not dyn compatible.
In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.