Expand description
algebra
Modulesยง
- action ๐
- lazy_
map ๐ - magma ๐
- algebraic traits
- operations ๐
- binary operaions
- ring ๐
- ring_
operations ๐
Macrosยง
Structsยง
- AddMul
Operation - $+,\times$
- Additive
Operation - $+$
- Array
Operation - BitAnd
Operation - &
- BitOr
Operation - |
- BitXor
Operation - ^
- Bits
- Bottomk
Operation - Concatenate
Operation - Counting
Operation - Empty
Act - Empty
ActLazy - Empty
AggAct Lazy - Find
Majority Operation - Find majority(strict) of a sequence.
- First
Operation - retain the first element
- Flatten
Act - Flatten
Lazy - Last
Operation - retain the last element
- Linear
Act - Linear
Operation - $(a, b) \circ (c, d) = \lambda x. c \times (a \times x + b) + d$
- Logical
Linear Operation - $(a, b) \circ (c, d) = \lambda x. c \wedge (a \wedge x \oplus b) \oplus d$
- MaxOperation
- binary operation to select larger element
- MinOperation
- binary operation to select smaller element
- Minimum
Interval Movement - Minimum
Interval Movement Operation - Multiplicative
Operation - $\times$
- Range
Chmin Chmax Add - Range
MaxRange Add - Range
MaxRange Update - Range
MinRange Add - Range
MinRange Update - Range
SumRange Add - Range
SumRange Chmin Chmax Add - Range
SumRange Linear - Range
SumRange Update - Reverse
Operation - Sorted
Concatenate Operation - Topk
Operation - Update
Act
Enumsยง
Traitsยง
- Abelian
Group - commutative group
- Abelian
Monoid - commutative monoid
- Associative
- $\forall a,\forall b,\forall c \in T, (a \circ b) \circ c = a \circ (b \circ c)$
- BitAnd
Identity - BitOr
Identity - BitXor
Identity - Commutative
- $\forall a,\forall b \in T, a \circ b = b \circ a$
- ExpBits
- Field
- Group
- associative binary operation and an identity element and inverse elements
- Idempotent
- $\forall a \in T, a \circ a = a$
- Idempotent
Monoid - idempotent monoid
- Invertible
- $\exists e \in T, \forall a \in T, \exists b,c \in T, b \circ a = a \circ c = e$
- Lazy
MapMonoid - Magma
- binary operaion: $T \circ T \to T$
- Monoid
- associative binary operation and an identity element
- Monoid
Act - Ring
- Semi
Group - associative binary operation
- Semi
Ring - Signed
ExpBits - Unital
- $\exists e \in T, \forall a \in T, e \circ a = a \circ e = e$