Field

Trait Field 

Source
pub trait Field: Ring<Multiplicative: Invertible> {
    // Provided methods
    fn inv(x: &Self::T) -> Self::T { ... }
    fn div(x: &Self::T, y: &Self::T) -> Self::T { ... }
    fn div_assign(x: &mut Self::T, y: &Self::T) { ... }
}

Provided Methods§

Source

fn inv(x: &Self::T) -> Self::T

multiplicative inverse: $-$

Examples found in repository?
crates/competitive/src/math/matrix.rs (line 177)
159    pub fn row_reduction_with<F>(&mut self, normalize: bool, mut f: F)
160    where
161        F: FnMut(usize, usize, usize),
162    {
163        let (n, m) = self.shape;
164        let mut c = 0;
165        for r in 0..n {
166            loop {
167                if c >= m {
168                    return;
169                }
170                if let Some(pivot) = (r..n).find(|&p| !R::is_zero(&self[p][c])) {
171                    f(r, pivot, c);
172                    self.data.swap(r, pivot);
173                    break;
174                };
175                c += 1;
176            }
177            let d = R::inv(&self[r][c]);
178            if normalize {
179                for j in c..m {
180                    R::mul_assign(&mut self[r][j], &d);
181                }
182            }
183            for i in (0..n).filter(|&i| i != r) {
184                let mut e = self[i][c].clone();
185                if !normalize {
186                    R::mul_assign(&mut e, &d);
187                }
188                for j in c..m {
189                    let e = R::mul(&e, &self[r][j]);
190                    R::sub_assign(&mut self[i][j], &e);
191                }
192            }
193            c += 1;
194        }
195    }
196
197    pub fn row_reduction(&mut self, normalize: bool) {
198        self.row_reduction_with(normalize, |_, _, _| {});
199    }
200
201    pub fn rank(&mut self) -> usize {
202        let n = self.shape.0;
203        self.row_reduction(false);
204        (0..n)
205            .filter(|&i| !self.data[i].iter().all(|x| R::is_zero(x)))
206            .count()
207    }
208
209    pub fn determinant(&mut self) -> R::T {
210        assert_eq!(self.shape.0, self.shape.1);
211        let mut neg = false;
212        self.row_reduction_with(false, |r, p, _| neg ^= r != p);
213        let mut d = R::one();
214        if neg {
215            d = R::neg(&d);
216        }
217        for i in 0..self.shape.0 {
218            R::mul_assign(&mut d, &self[i][i]);
219        }
220        d
221    }
222
223    pub fn solve_system_of_linear_equations(
224        &self,
225        b: &[R::T],
226    ) -> Option<SystemOfLinearEquationsSolution<R>> {
227        assert_eq!(self.shape.0, b.len());
228        let (n, m) = self.shape;
229        let mut c = Matrix::<R>::zeros((n, m + 1));
230        for i in 0..n {
231            c[i][..m].clone_from_slice(&self[i]);
232            c[i][m] = b[i].clone();
233        }
234        let mut reduced = vec![!0; m + 1];
235        c.row_reduction_with(true, |r, _, c| reduced[c] = r);
236        if reduced[m] != !0 {
237            return None;
238        }
239        let mut particular = vec![R::zero(); m];
240        let mut basis = vec![];
241        for j in 0..m {
242            if reduced[j] != !0 {
243                particular[j] = c[reduced[j]][m].clone();
244            } else {
245                let mut v = vec![R::zero(); m];
246                v[j] = R::one();
247                for i in 0..m {
248                    if reduced[i] != !0 {
249                        R::sub_assign(&mut v[i], &c[reduced[i]][j]);
250                    }
251                }
252                basis.push(v);
253            }
254        }
255        Some(SystemOfLinearEquationsSolution { particular, basis })
256    }
257
258    pub fn inverse(&self) -> Option<Matrix<R>> {
259        assert_eq!(self.shape.0, self.shape.1);
260        let n = self.shape.0;
261        let mut c = Matrix::<R>::zeros((n, n * 2));
262        for i in 0..n {
263            c[i][..n].clone_from_slice(&self[i]);
264            c[i][n + i] = R::one();
265        }
266        c.row_reduction(true);
267        if (0..n).any(|i| R::is_zero(&c[i][i])) {
268            None
269        } else {
270            Some(Self::from_vec(
271                c.data.into_iter().map(|r| r[n..].to_vec()).collect(),
272            ))
273        }
274    }
275
276    pub fn characteristic_polynomial(&mut self) -> Vec<R::T> {
277        let n = self.shape.0;
278        if n == 0 {
279            return vec![R::one()];
280        }
281        assert!(self.data.iter().all(|a| a.len() == n));
282        for j in 0..(n - 1) {
283            if let Some(x) = ((j + 1)..n).find(|&x| !R::is_zero(&self[x][j])) {
284                self.data.swap(j + 1, x);
285                self.data.iter_mut().for_each(|a| a.swap(j + 1, x));
286                let inv = R::inv(&self[j + 1][j]);
287                let mut v = vec![];
288                let src = std::mem::take(&mut self[j + 1]);
289                for a in self.data[(j + 2)..].iter_mut() {
290                    let mul = R::mul(&a[j], &inv);
291                    for (a, src) in a[j..].iter_mut().zip(src[j..].iter()) {
292                        R::sub_assign(a, &R::mul(&mul, src));
293                    }
294                    v.push(mul);
295                }
296                self[j + 1] = src;
297                for a in self.data.iter_mut() {
298                    let v = a[(j + 2)..]
299                        .iter()
300                        .zip(v.iter())
301                        .fold(R::zero(), |s, a| R::add(&s, &R::mul(a.0, a.1)));
302                    R::add_assign(&mut a[j + 1], &v);
303                }
304            }
305        }
306        let mut dp = vec![vec![R::one()]];
307        for i in 0..n {
308            let mut next = vec![R::zero(); i + 2];
309            for (j, dp) in dp[i].iter().enumerate() {
310                R::sub_assign(&mut next[j], &R::mul(dp, &self[i][i]));
311                R::add_assign(&mut next[j + 1], dp);
312            }
313            let mut mul = R::one();
314            for j in (0..i).rev() {
315                mul = R::mul(&mul, &self[j + 1][j]);
316                let c = R::mul(&mul, &self[j][i]);
317                for (next, dp) in next.iter_mut().zip(dp[j].iter()) {
318                    R::sub_assign(next, &R::mul(&c, dp));
319                }
320            }
321            dp.push(next);
322        }
323        dp.pop().unwrap()
324    }
More examples
Hide additional examples
crates/competitive/src/algorithm/automata_learning.rs (line 554)
523    pub fn train_sample(&mut self, sample: &[usize]) -> bool {
524        let Some((prefix, suffix)) = self.split_sample(sample) else {
525            return false;
526        };
527        self.prefixes.push(prefix);
528        self.suffixes.push(suffix);
529        let n = self.inv_h.shape.0;
530        let prefix = &self.prefixes[n];
531        let suffix = &self.suffixes[n];
532        let u = Matrix::<F>::new_with((n, 1), |i, _| {
533            self.automaton.behavior(
534                self.prefixes[i]
535                    .iter()
536                    .cloned()
537                    .chain(suffix.iter().cloned()),
538            )
539        });
540        let v = Matrix::<F>::new_with((1, n), |_, j| {
541            self.automaton.behavior(
542                prefix
543                    .iter()
544                    .cloned()
545                    .chain(self.suffixes[j].iter().cloned()),
546            )
547        });
548        let w = Matrix::<F>::new_with((1, 1), |_, _| {
549            self.automaton
550                .behavior(prefix.iter().cloned().chain(suffix.iter().cloned()))
551        });
552        let t = &self.inv_h * &u;
553        let s = &v * &self.inv_h;
554        let d = F::inv(&(&w - &(&v * &t))[0][0]);
555        let dh = &t * &s;
556        for i in 0..n {
557            for j in 0..n {
558                F::add_assign(&mut self.inv_h[i][j], &F::mul(&dh[i][j], &d));
559            }
560        }
561        self.inv_h
562            .add_col_with(|i, _| F::neg(&F::mul(&t[i][0], &d)));
563        self.inv_h.add_row_with(|_, j| {
564            if j != n {
565                F::neg(&F::mul(&s[0][j], &d))
566            } else {
567                d.clone()
568            }
569        });
570
571        for (x, transition) in self.wfa.transitions.iter_mut().enumerate() {
572            let b = &(&self.nh[x] * &t) * &s;
573            for i in 0..n {
574                for j in 0..n {
575                    F::add_assign(&mut transition[i][j], &F::mul(&b[i][j], &d));
576                }
577            }
578        }
579        for (x, nh) in self.nh.iter_mut().enumerate() {
580            nh.add_col_with(|i, j| {
581                self.automaton.behavior(
582                    self.prefixes[i]
583                        .iter()
584                        .cloned()
585                        .chain([x])
586                        .chain(self.suffixes[j].iter().cloned()),
587                )
588            });
589            nh.add_row_with(|i, j| {
590                self.automaton.behavior(
591                    self.prefixes[i]
592                        .iter()
593                        .cloned()
594                        .chain([x])
595                        .chain(self.suffixes[j].iter().cloned()),
596                )
597            });
598        }
599        self.wfa
600            .initial_weights
601            .add_col_with(|_, _| if n == 0 { F::one() } else { F::zero() });
602        self.wfa
603            .final_weights
604            .add_row_with(|_, _| self.automaton.behavior(prefix.iter().cloned()));
605        for (x, transition) in self.wfa.transitions.iter_mut().enumerate() {
606            transition.add_col_with(|_, _| F::zero());
607            transition.add_row_with(|_, _| F::zero());
608            for i in 0..=n {
609                for j in 0..=n {
610                    if i == n || j == n {
611                        for k in 0..=n {
612                            if i != n && j != n && k != n {
613                                continue;
614                            }
615                            F::add_assign(
616                                &mut transition[i][k],
617                                &F::mul(&self.nh[x][i][j], &self.inv_h[j][k]),
618                            );
619                        }
620                    } else {
621                        let k = n;
622                        F::add_assign(
623                            &mut transition[i][k],
624                            &F::mul(&self.nh[x][i][j], &self.inv_h[j][k]),
625                        );
626                    }
627                }
628            }
629        }
630        true
631    }
Source

fn div(x: &Self::T, y: &Self::T) -> Self::T

multiplicative right inversed operaion: $-$

Examples found in repository?
crates/competitive/src/math/bitwisexor_convolve.rs (line 41)
37    fn inverse_transform(mut f: Self::F, len: usize) -> Self::T {
38        BitwisexorConvolve::<R::Additive, false>::hadamard_transform(&mut f);
39        let len = R::T::from(len);
40        for f in f.iter_mut() {
41            *f = R::div(f, &len);
42        }
43        f
44    }
45
46    fn multiply(f: &mut Self::F, g: &Self::F) {
47        for (f, g) in f.iter_mut().zip(g) {
48            *f = R::mul(f, g);
49        }
50    }
51
52    fn convolve(a: Self::T, b: Self::T) -> Self::T {
53        assert_eq!(a.len(), b.len());
54        let len = a.len();
55        let same = a == b;
56        let mut a = Self::transform(a, len);
57        if same {
58            for a in a.iter_mut() {
59                *a = R::mul(a, a);
60            }
61        } else {
62            let b = Self::transform(b, len);
63            Self::multiply(&mut a, &b);
64        }
65        Self::inverse_transform(a, len)
66    }
67}
68
69impl<R> ConvolveSteps for BitwisexorConvolve<R, true>
70where
71    R: Field<T: PartialEq + TryFrom<usize>, Additive: Invertible, Multiplicative: Invertible>,
72    <R::T as TryFrom<usize>>::Error: Debug,
73{
74    type T = Vec<R::T>;
75    type F = Vec<R::T>;
76
77    fn length(t: &Self::T) -> usize {
78        t.len()
79    }
80
81    fn transform(mut t: Self::T, _len: usize) -> Self::F {
82        BitwisexorConvolve::<R::Additive, true>::hadamard_transform(&mut t);
83        t
84    }
85
86    fn inverse_transform(mut f: Self::F, len: usize) -> Self::T {
87        BitwisexorConvolve::<R::Additive, true>::hadamard_transform(&mut f);
88        let len = R::T::try_from(len).unwrap();
89        for f in f.iter_mut() {
90            *f = R::div(f, &len);
91        }
92        f
93    }
Source

fn div_assign(x: &mut Self::T, y: &Self::T)

Dyn Compatibility§

This trait is not dyn compatible.

In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.

Implementors§

Source§

impl<F> Field for F
where F: Ring<Multiplicative: Invertible>,