Field

Trait Field 

Source
pub trait Field: Ring{
    // Provided methods
    fn inv(x: &Self::T) -> Self::T { ... }
    fn div(x: &Self::T, y: &Self::T) -> Self::T { ... }
    fn div_assign(x: &mut Self::T, y: &Self::T) { ... }
}

Provided Methods§

Source

fn inv(x: &Self::T) -> Self::T

multiplicative inverse: $-$

Examples found in repository?
crates/competitive/src/math/matrix.rs (line 189)
171    pub fn row_reduction_with<F>(&mut self, normalize: bool, mut f: F)
172    where
173        F: FnMut(usize, usize, usize),
174    {
175        let (n, m) = self.shape;
176        let mut c = 0;
177        for r in 0..n {
178            loop {
179                if c >= m {
180                    return;
181                }
182                if let Some(pivot) = (r..n).find(|&p| !R::is_zero(&self[p][c])) {
183                    f(r, pivot, c);
184                    self.data.swap(r, pivot);
185                    break;
186                };
187                c += 1;
188            }
189            let d = R::inv(&self[r][c]);
190            if normalize {
191                for j in c..m {
192                    R::mul_assign(&mut self[r][j], &d);
193                }
194            }
195            for i in (0..n).filter(|&i| i != r) {
196                let mut e = self[i][c].clone();
197                if !normalize {
198                    R::mul_assign(&mut e, &d);
199                }
200                for j in c..m {
201                    let e = R::mul(&e, &self[r][j]);
202                    R::sub_assign(&mut self[i][j], &e);
203                }
204            }
205            c += 1;
206        }
207    }
208
209    pub fn row_reduction(&mut self, normalize: bool) {
210        self.row_reduction_with(normalize, |_, _, _| {});
211    }
212
213    pub fn rank(&mut self) -> usize {
214        let n = self.shape.0;
215        self.row_reduction(false);
216        (0..n)
217            .filter(|&i| !self.data[i].iter().all(|x| R::is_zero(x)))
218            .count()
219    }
220
221    pub fn determinant(&mut self) -> R::T {
222        assert_eq!(self.shape.0, self.shape.1);
223        let mut neg = false;
224        self.row_reduction_with(false, |r, p, _| neg ^= r != p);
225        let mut d = R::one();
226        if neg {
227            d = R::neg(&d);
228        }
229        for i in 0..self.shape.0 {
230            R::mul_assign(&mut d, &self[i][i]);
231        }
232        d
233    }
234
235    pub fn solve_system_of_linear_equations(
236        &self,
237        b: &[R::T],
238    ) -> Option<SystemOfLinearEquationsSolution<R>> {
239        assert_eq!(self.shape.0, b.len());
240        let (n, m) = self.shape;
241        let mut c = Matrix::<R>::zeros((n, m + 1));
242        for i in 0..n {
243            c[i][..m].clone_from_slice(&self[i]);
244            c[i][m] = b[i].clone();
245        }
246        let mut reduced = vec![!0; m + 1];
247        c.row_reduction_with(true, |r, _, c| reduced[c] = r);
248        if reduced[m] != !0 {
249            return None;
250        }
251        let mut particular = vec![R::zero(); m];
252        let mut basis = vec![];
253        for j in 0..m {
254            if reduced[j] != !0 {
255                particular[j] = c[reduced[j]][m].clone();
256            } else {
257                let mut v = vec![R::zero(); m];
258                v[j] = R::one();
259                for i in 0..m {
260                    if reduced[i] != !0 {
261                        R::sub_assign(&mut v[i], &c[reduced[i]][j]);
262                    }
263                }
264                basis.push(v);
265            }
266        }
267        Some(SystemOfLinearEquationsSolution { particular, basis })
268    }
269
270    pub fn inverse(&self) -> Option<Matrix<R>> {
271        assert_eq!(self.shape.0, self.shape.1);
272        let n = self.shape.0;
273        let mut c = Matrix::<R>::zeros((n, n * 2));
274        for i in 0..n {
275            c[i][..n].clone_from_slice(&self[i]);
276            c[i][n + i] = R::one();
277        }
278        c.row_reduction(true);
279        if (0..n).any(|i| R::is_zero(&c[i][i])) {
280            None
281        } else {
282            Some(Self::from_vec(
283                c.data.into_iter().map(|r| r[n..].to_vec()).collect(),
284            ))
285        }
286    }
287
288    pub fn characteristic_polynomial(&mut self) -> Vec<R::T> {
289        let n = self.shape.0;
290        if n == 0 {
291            return vec![R::one()];
292        }
293        assert!(self.data.iter().all(|a| a.len() == n));
294        for j in 0..(n - 1) {
295            if let Some(x) = ((j + 1)..n).find(|&x| !R::is_zero(&self[x][j])) {
296                self.data.swap(j + 1, x);
297                self.data.iter_mut().for_each(|a| a.swap(j + 1, x));
298                let inv = R::inv(&self[j + 1][j]);
299                let mut v = vec![];
300                let src = std::mem::take(&mut self[j + 1]);
301                for a in self.data[(j + 2)..].iter_mut() {
302                    let mul = R::mul(&a[j], &inv);
303                    for (a, src) in a[j..].iter_mut().zip(src[j..].iter()) {
304                        R::sub_assign(a, &R::mul(&mul, src));
305                    }
306                    v.push(mul);
307                }
308                self[j + 1] = src;
309                for a in self.data.iter_mut() {
310                    let v = a[(j + 2)..]
311                        .iter()
312                        .zip(v.iter())
313                        .fold(R::zero(), |s, a| R::add(&s, &R::mul(a.0, a.1)));
314                    R::add_assign(&mut a[j + 1], &v);
315                }
316            }
317        }
318        let mut dp = vec![vec![R::one()]];
319        for i in 0..n {
320            let mut next = vec![R::zero(); i + 2];
321            for (j, dp) in dp[i].iter().enumerate() {
322                R::sub_assign(&mut next[j], &R::mul(dp, &self[i][i]));
323                R::add_assign(&mut next[j + 1], dp);
324            }
325            let mut mul = R::one();
326            for j in (0..i).rev() {
327                mul = R::mul(&mul, &self[j + 1][j]);
328                let c = R::mul(&mul, &self[j][i]);
329                for (next, dp) in next.iter_mut().zip(dp[j].iter()) {
330                    R::sub_assign(next, &R::mul(&c, dp));
331                }
332            }
333            dp.push(next);
334        }
335        dp.pop().unwrap()
336    }
More examples
Hide additional examples
crates/competitive/src/algorithm/automata_learning.rs (line 576)
545    pub fn train_sample(&mut self, sample: &[usize]) -> bool {
546        let Some((prefix, suffix)) = self.split_sample(sample) else {
547            return false;
548        };
549        self.prefixes.push(prefix);
550        self.suffixes.push(suffix);
551        let n = self.inv_h.shape.0;
552        let prefix = &self.prefixes[n];
553        let suffix = &self.suffixes[n];
554        let u = Matrix::<F>::new_with((n, 1), |i, _| {
555            self.automaton.behavior(
556                self.prefixes[i]
557                    .iter()
558                    .cloned()
559                    .chain(suffix.iter().cloned()),
560            )
561        });
562        let v = Matrix::<F>::new_with((1, n), |_, j| {
563            self.automaton.behavior(
564                prefix
565                    .iter()
566                    .cloned()
567                    .chain(self.suffixes[j].iter().cloned()),
568            )
569        });
570        let w = Matrix::<F>::new_with((1, 1), |_, _| {
571            self.automaton
572                .behavior(prefix.iter().cloned().chain(suffix.iter().cloned()))
573        });
574        let t = &self.inv_h * &u;
575        let s = &v * &self.inv_h;
576        let d = F::inv(&(&w - &(&v * &t))[0][0]);
577        let dh = &t * &s;
578        for i in 0..n {
579            for j in 0..n {
580                F::add_assign(&mut self.inv_h[i][j], &F::mul(&dh[i][j], &d));
581            }
582        }
583        self.inv_h
584            .add_col_with(|i, _| F::neg(&F::mul(&t[i][0], &d)));
585        self.inv_h.add_row_with(|_, j| {
586            if j != n {
587                F::neg(&F::mul(&s[0][j], &d))
588            } else {
589                d.clone()
590            }
591        });
592
593        for (x, transition) in self.wfa.transitions.iter_mut().enumerate() {
594            let b = &(&self.nh[x] * &t) * &s;
595            for i in 0..n {
596                for j in 0..n {
597                    F::add_assign(&mut transition[i][j], &F::mul(&b[i][j], &d));
598                }
599            }
600        }
601        for (x, nh) in self.nh.iter_mut().enumerate() {
602            nh.add_col_with(|i, j| {
603                self.automaton.behavior(
604                    self.prefixes[i]
605                        .iter()
606                        .cloned()
607                        .chain([x])
608                        .chain(self.suffixes[j].iter().cloned()),
609                )
610            });
611            nh.add_row_with(|i, j| {
612                self.automaton.behavior(
613                    self.prefixes[i]
614                        .iter()
615                        .cloned()
616                        .chain([x])
617                        .chain(self.suffixes[j].iter().cloned()),
618                )
619            });
620        }
621        self.wfa
622            .initial_weights
623            .add_col_with(|_, _| if n == 0 { F::one() } else { F::zero() });
624        self.wfa
625            .final_weights
626            .add_row_with(|_, _| self.automaton.behavior(prefix.iter().cloned()));
627        for (x, transition) in self.wfa.transitions.iter_mut().enumerate() {
628            transition.add_col_with(|_, _| F::zero());
629            transition.add_row_with(|_, _| F::zero());
630            for i in 0..=n {
631                for j in 0..=n {
632                    if i == n || j == n {
633                        for k in 0..=n {
634                            if i != n && j != n && k != n {
635                                continue;
636                            }
637                            F::add_assign(
638                                &mut transition[i][k],
639                                &F::mul(&self.nh[x][i][j], &self.inv_h[j][k]),
640                            );
641                        }
642                    } else {
643                        let k = n;
644                        F::add_assign(
645                            &mut transition[i][k],
646                            &F::mul(&self.nh[x][i][j], &self.inv_h[j][k]),
647                        );
648                    }
649                }
650            }
651        }
652        true
653    }
Source

fn div(x: &Self::T, y: &Self::T) -> Self::T

multiplicative right inversed operaion: $-$

Examples found in repository?
crates/competitive/src/math/bitwisexor_convolve.rs (line 45)
41    fn inverse_transform(mut f: Self::F, len: usize) -> Self::T {
42        BitwisexorConvolve::<R::Additive, false>::hadamard_transform(&mut f);
43        let len = R::T::from(len);
44        for f in f.iter_mut() {
45            *f = R::div(f, &len);
46        }
47        f
48    }
49
50    fn multiply(f: &mut Self::F, g: &Self::F) {
51        for (f, g) in f.iter_mut().zip(g) {
52            *f = R::mul(f, g);
53        }
54    }
55
56    fn convolve(a: Self::T, b: Self::T) -> Self::T {
57        assert_eq!(a.len(), b.len());
58        let len = a.len();
59        let same = a == b;
60        let mut a = Self::transform(a, len);
61        if same {
62            for a in a.iter_mut() {
63                *a = R::mul(a, a);
64            }
65        } else {
66            let b = Self::transform(b, len);
67            Self::multiply(&mut a, &b);
68        }
69        Self::inverse_transform(a, len)
70    }
71}
72
73impl<R> ConvolveSteps for BitwisexorConvolve<R, true>
74where
75    R: Field,
76    R::T: PartialEq,
77    R::Additive: Invertible,
78    R::Multiplicative: Invertible,
79    R::T: TryFrom<usize>,
80    <R::T as TryFrom<usize>>::Error: Debug,
81{
82    type T = Vec<R::T>;
83    type F = Vec<R::T>;
84
85    fn length(t: &Self::T) -> usize {
86        t.len()
87    }
88
89    fn transform(mut t: Self::T, _len: usize) -> Self::F {
90        BitwisexorConvolve::<R::Additive, true>::hadamard_transform(&mut t);
91        t
92    }
93
94    fn inverse_transform(mut f: Self::F, len: usize) -> Self::T {
95        BitwisexorConvolve::<R::Additive, true>::hadamard_transform(&mut f);
96        let len = R::T::try_from(len).unwrap();
97        for f in f.iter_mut() {
98            *f = R::div(f, &len);
99        }
100        f
101    }
Source

fn div_assign(x: &mut Self::T, y: &Self::T)

Dyn Compatibility§

This trait is not dyn compatible.

In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.

Implementors§