pub trait BlackBoxMIntMatrix<M>: BlackBoxMatrix<AddMulOperation<MInt<M>>>where
M: MIntBase,{
// Provided methods
fn minimal_polynomial(&self) -> Vec<MInt<M>>
where M: MIntConvert<u64> { ... }
fn apply_pow<C>(&self, b: Vec<MInt<M>>, k: usize) -> Vec<MInt<M>>
where M: MIntConvert<usize> + MIntConvert<u64>,
C: ConvolveSteps<T = Vec<MInt<M>>> { ... }
fn black_box_determinant(&self) -> MInt<M>
where M: MIntConvert<u64> { ... }
fn black_box_linear_equation(&self, b: Vec<MInt<M>>) -> Option<Vec<MInt<M>>>
where M: MIntConvert<u64> { ... }
}Provided Methods§
Sourcefn minimal_polynomial(&self) -> Vec<MInt<M>>where
M: MIntConvert<u64>,
fn minimal_polynomial(&self) -> Vec<MInt<M>>where
M: MIntConvert<u64>,
Examples found in repository?
crates/competitive/src/math/black_box_matrix.rs (line 243)
235 fn apply_pow<C>(&self, mut b: Vec<MInt<M>>, k: usize) -> Vec<MInt<M>>
236 where
237 M: MIntConvert<usize> + MIntConvert<u64>,
238 C: ConvolveSteps<T = Vec<MInt<M>>>,
239 {
240 assert_eq!(self.shape().0, self.shape().1);
241 assert_eq!(self.shape().1, b.len());
242 let n = self.shape().0;
243 let p = self.minimal_polynomial();
244 let f = FormalPowerSeries::<MInt<M>, C>::from_vec(p).pow_mod(k);
245 let mut res = vec![MInt::zero(); n];
246 for f in f {
247 for j in 0..n {
248 res[j] += f * b[j];
249 }
250 b = self.apply(&b);
251 }
252 res
253 }
254
255 fn black_box_determinant(&self) -> MInt<M>
256 where
257 M: MIntConvert<u64>,
258 {
259 assert_eq!(self.shape().0, self.shape().1);
260 let n = self.shape().0;
261 let mut rng = Xorshift::new();
262 let d: Vec<MInt<M>> = (0..n).map(|_| MInt::from(rng.rand64())).collect();
263 let det_d = d.iter().fold(MInt::one(), |s, x| s * x);
264 let ad = BlackBoxMatrixImpl::<AddMulOperation<MInt<M>>, _>::new(
265 self.shape(),
266 |v: &[MInt<M>]| {
267 let mut w = self.apply(v);
268 for (w, d) in w.iter_mut().zip(&d) {
269 *w *= d;
270 }
271 w
272 },
273 );
274 let p = ad.minimal_polynomial();
275 let det_ad = if n % 2 == 0 { p[0] } else { -p[0] };
276 det_ad / det_d
277 }
278
279 fn black_box_linear_equation(&self, mut b: Vec<MInt<M>>) -> Option<Vec<MInt<M>>>
280 where
281 M: MIntConvert<u64>,
282 {
283 assert_eq!(self.shape().0, self.shape().1);
284 assert_eq!(self.shape().1, b.len());
285 let n = self.shape().0;
286 let p = self.minimal_polynomial();
287 if p.is_empty() || p[0].is_zero() {
288 return None;
289 }
290 let p0_inv = p[0].inv();
291 let mut x = vec![MInt::zero(); n];
292 for p in p.into_iter().skip(1) {
293 let p = -p * p0_inv;
294 for i in 0..n {
295 x[i] += p * b[i];
296 }
297 b = self.apply(&b);
298 }
299 Some(x)
300 }fn apply_pow<C>(&self, b: Vec<MInt<M>>, k: usize) -> Vec<MInt<M>>
Sourcefn black_box_determinant(&self) -> MInt<M>where
M: MIntConvert<u64>,
fn black_box_determinant(&self) -> MInt<M>where
M: MIntConvert<u64>,
fn black_box_linear_equation(&self, b: Vec<MInt<M>>) -> Option<Vec<MInt<M>>>where
M: MIntConvert<u64>,
Dyn Compatibility§
This trait is not dyn compatible.
In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.