competitive/math/
linear_congruence.rs1use super::Unsigned;
2
3pub fn solve_linear_congruence<T>(a: T, b: T, m: T) -> Option<(T, T)>
7where
8 T: Unsigned,
9{
10 let g = a.gcd(m);
11 if b % g != T::zero() {
12 return None;
13 }
14 let (a, b, m) = (a / g, b / g, m / g);
15 Some((b.mod_mul(a.mod_inv(m), m), m))
16}
17
18pub fn solve_simultaneous_linear_congruence<T, I>(abm: I) -> Option<(T, T)>
22where
23 T: Unsigned,
24 I: IntoIterator<Item = (T, T, T)>,
25{
26 let mut x = T::zero();
27 let mut m0 = T::one();
28 for (a, b, m) in abm {
29 let b = b.mod_sub(a.mod_mul(x, m), m);
30 let a = a * m0;
31 let (y, z) = solve_linear_congruence(a, b, m)?;
32 x += y * m0;
33 m0 *= z;
34 }
35 x %= m0;
36 Some((x, m0))
37}
38
39#[test]
40fn test_linear_congruence() {
41 use crate::math::lcm;
42 use crate::tools::Xorshift;
43 const N: usize = 5;
44 const Q: usize = 1_000;
45 let mut rng = Xorshift::new();
46 for _ in 0..Q {
47 let abm: Vec<_> = (0..N)
48 .map(|_| {
49 let m = rng.random(2u64..=20);
50 (rng.random(1..m), rng.random(0..m), m)
51 })
52 .collect();
53 if let Some((x, m0)) = solve_simultaneous_linear_congruence(abm.iter().cloned()) {
54 assert!(x < m0);
55 for (a, b, m) in abm.iter().cloned() {
56 assert!(a * x % m == b);
57 }
58 } else {
59 let m0 = abm[1..].iter().fold(abm[0].2, |x, y| lcm(x, y.2));
60 let x = (0..m0).find(|&x| abm.iter().cloned().all(|(a, b, m)| a * x % m == b));
61 assert_eq!(x, None);
62 }
63 }
64}