competitive/math/
linear_congruence.rs1use super::Unsigned;
2
3pub fn solve_linear_congruence<T>(a: T, b: T, m: T) -> Option<(T, T)>
7where
8 T: Unsigned,
9{
10 let g = a.gcd(m);
11 if b % g != T::zero() {
12 return None;
13 }
14 let (a, b, m) = (a / g, b / g, m / g);
15 Some((b.mod_mul(a.mod_inv(m), m), m))
16}
17
18pub fn solve_simultaneous_linear_congruence<T, I>(abm: I) -> Option<(T, T)>
22where
23 T: Unsigned,
24 I: IntoIterator<Item = (T, T, T)>,
25{
26 let mut x = T::zero();
27 let mut m0 = T::one();
28 for (a, b, m) in abm {
29 let b = b.mod_sub(a.mod_mul(x, m), m);
30 let a = a * m0;
31 let (y, z) = solve_linear_congruence(a, b, m)?;
32 x += y * m0;
33 m0 *= z;
34 }
35 x %= m0;
36 Some((x, m0))
37}
38
39#[cfg(test)]
40mod tests {
41 use super::*;
42 use crate::{math::lcm, tools::Xorshift};
43
44 #[test]
45 fn test_linear_congruence() {
46 const N: usize = 5;
47 const Q: usize = 1_000;
48 let mut rng = Xorshift::default();
49 for _ in 0..Q {
50 let abm: Vec<_> = (0..N)
51 .map(|_| {
52 let m = rng.random(2u64..=20);
53 (rng.random(1..m), rng.random(0..m), m)
54 })
55 .collect();
56 if let Some((x, m0)) = solve_simultaneous_linear_congruence(abm.iter().cloned()) {
57 assert!(x < m0);
58 for (a, b, m) in abm.iter().cloned() {
59 assert!(a * x % m == b);
60 }
61 } else {
62 let m0 = abm[1..].iter().fold(abm[0].2, |x, y| lcm(x, y.2));
63 let x = (0..m0).find(|&x| abm.iter().cloned().all(|(a, b, m)| a * x % m == b));
64 assert_eq!(x, None);
65 }
66 }
67 }
68}