competitive/math/formal_power_series/
formal_power_series_impls.rs1use super::*;
2use std::{
3 cmp::Reverse,
4 collections::BinaryHeap,
5 iter::repeat_with,
6 iter::{FromIterator, once},
7 marker::PhantomData,
8 ops::{Index, IndexMut},
9 slice::{Iter, IterMut},
10};
11
12impl<T, C> FormalPowerSeries<T, C> {
13 pub fn from_vec(data: Vec<T>) -> Self {
14 Self {
15 data,
16 _marker: PhantomData,
17 }
18 }
19 pub fn length(&self) -> usize {
20 self.data.len()
21 }
22 pub fn truncate(&mut self, deg: usize) {
23 self.data.truncate(deg)
24 }
25 pub fn iter(&self) -> Iter<'_, T> {
26 self.data.iter()
27 }
28 pub fn iter_mut(&mut self) -> IterMut<'_, T> {
29 self.data.iter_mut()
30 }
31}
32
33impl<T, C> Clone for FormalPowerSeries<T, C>
34where
35 T: Clone,
36{
37 fn clone(&self) -> Self {
38 Self::from_vec(self.data.clone())
39 }
40}
41impl<T, C> PartialEq for FormalPowerSeries<T, C>
42where
43 T: PartialEq,
44{
45 fn eq(&self, other: &Self) -> bool {
46 self.data.eq(&other.data)
47 }
48}
49impl<T, C> Eq for FormalPowerSeries<T, C> where T: PartialEq {}
50
51impl<T, C> FormalPowerSeries<T, C>
52where
53 T: Zero,
54{
55 pub fn zeros(deg: usize) -> Self {
56 repeat_with(T::zero).take(deg).collect()
57 }
58 pub fn resize(&mut self, deg: usize) {
59 self.data.resize_with(deg, Zero::zero)
60 }
61 pub fn resized(mut self, deg: usize) -> Self {
62 self.resize(deg);
63 self
64 }
65 pub fn reversed(mut self) -> Self {
66 self.data.reverse();
67 self
68 }
69}
70
71impl<T, C> FormalPowerSeries<T, C>
72where
73 T: Zero + PartialEq,
74{
75 pub fn trim_tail_zeros(&mut self) {
76 let mut len = self.length();
77 while len > 0 {
78 if self.data[len - 1].is_zero() {
79 len -= 1;
80 } else {
81 break;
82 }
83 }
84 self.truncate(len);
85 }
86}
87
88impl<T, C> Zero for FormalPowerSeries<T, C>
89where
90 T: PartialEq,
91{
92 fn zero() -> Self {
93 Self::from_vec(Vec::new())
94 }
95}
96impl<T, C> One for FormalPowerSeries<T, C>
97where
98 T: PartialEq + One,
99{
100 fn one() -> Self {
101 Self::from(T::one())
102 }
103}
104
105impl<T, C> IntoIterator for FormalPowerSeries<T, C> {
106 type Item = T;
107 type IntoIter = std::vec::IntoIter<T>;
108 fn into_iter(self) -> Self::IntoIter {
109 self.data.into_iter()
110 }
111}
112impl<'a, T, C> IntoIterator for &'a FormalPowerSeries<T, C> {
113 type Item = &'a T;
114 type IntoIter = Iter<'a, T>;
115 fn into_iter(self) -> Self::IntoIter {
116 self.data.iter()
117 }
118}
119impl<'a, T, C> IntoIterator for &'a mut FormalPowerSeries<T, C> {
120 type Item = &'a mut T;
121 type IntoIter = IterMut<'a, T>;
122 fn into_iter(self) -> Self::IntoIter {
123 self.data.iter_mut()
124 }
125}
126
127impl<T, C> FromIterator<T> for FormalPowerSeries<T, C> {
128 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
129 Self::from_vec(iter.into_iter().collect())
130 }
131}
132
133impl<T, C> Index<usize> for FormalPowerSeries<T, C> {
134 type Output = T;
135 fn index(&self, index: usize) -> &Self::Output {
136 &self.data[index]
137 }
138}
139impl<T, C> IndexMut<usize> for FormalPowerSeries<T, C> {
140 fn index_mut(&mut self, index: usize) -> &mut Self::Output {
141 &mut self.data[index]
142 }
143}
144
145impl<T, C> From<T> for FormalPowerSeries<T, C> {
146 fn from(x: T) -> Self {
147 once(x).collect()
148 }
149}
150impl<T, C> From<Vec<T>> for FormalPowerSeries<T, C> {
151 fn from(data: Vec<T>) -> Self {
152 Self::from_vec(data)
153 }
154}
155
156impl<T, C> FormalPowerSeries<T, C>
157where
158 T: FormalPowerSeriesCoefficient,
159{
160 pub fn prefix_ref(&self, deg: usize) -> Self {
161 if deg < self.length() {
162 Self::from_vec(self.data[..deg].to_vec())
163 } else {
164 self.clone()
165 }
166 }
167 pub fn prefix(mut self, deg: usize) -> Self {
168 self.data.truncate(deg);
169 self
170 }
171 pub fn even(mut self) -> Self {
172 let mut keep = false;
173 self.data.retain(|_| {
174 keep = !keep;
175 keep
176 });
177 self
178 }
179 pub fn odd(mut self) -> Self {
180 let mut keep = true;
181 self.data.retain(|_| {
182 keep = !keep;
183 keep
184 });
185 self
186 }
187 pub fn diff(mut self) -> Self {
188 let mut c = T::one();
189 for x in self.iter_mut().skip(1) {
190 *x *= &c;
191 c += T::one();
192 }
193 if self.length() > 0 {
194 self.data.remove(0);
195 }
196 self
197 }
198 pub fn integral(mut self) -> Self {
199 let n = self.length();
200 self.data.insert(0, Zero::zero());
201 let mut fact = Vec::with_capacity(n + 1);
202 let mut c = T::one();
203 fact.push(c.clone());
204 for _ in 1..n {
205 fact.push(fact.last().cloned().unwrap() * c.clone());
206 c += T::one();
207 }
208 let mut invf = T::one() / (fact.last().cloned().unwrap() * c.clone());
209 for x in self.iter_mut().skip(1).rev() {
210 *x *= invf.clone() * fact.pop().unwrap();
211 invf *= c.clone();
212 c -= T::one();
213 }
214 self
215 }
216 pub fn eval(&self, x: T) -> T {
217 let mut base = T::one();
218 let mut res = T::zero();
219 for a in self.iter() {
220 res += base.clone() * a.clone();
221 base *= x.clone();
222 }
223 res
224 }
225}
226
227impl<T, C> FormalPowerSeries<T, C>
228where
229 T: FormalPowerSeriesCoefficient,
230 C: ConvolveSteps<T = Vec<T>>,
231{
232 pub fn inv(&self, deg: usize) -> Self {
233 debug_assert!(!self[0].is_zero());
234 let mut f = Self::from(T::one() / self[0].clone());
235 let mut i = 1;
236 while i < deg {
237 let g = self.prefix_ref((i * 2).min(deg));
238 let h = f.clone();
239 let mut g = C::transform(g.data, 2 * i);
240 let h = C::transform(h.data, 2 * i);
241 C::multiply(&mut g, &h);
242 let mut g = Self::from_vec(C::inverse_transform(g, 2 * i));
243 g >>= i;
244 let mut g = C::transform(g.data, 2 * i);
245 C::multiply(&mut g, &h);
246 let g = Self::from_vec(C::inverse_transform(g, 2 * i));
247 f.data.extend((-g).into_iter().take(i));
248 i *= 2;
249 }
250 f.truncate(deg);
251 f
252 }
253 pub fn exp(&self, deg: usize) -> Self {
254 debug_assert!(self[0].is_zero());
255 let mut f = Self::one();
256 let mut i = 1;
257 while i < deg {
258 let mut g = -f.log(i * 2);
259 g[0] += T::one();
260 for (g, x) in g.iter_mut().zip(self.iter().take(i * 2)) {
261 *g += x.clone();
262 }
263 f = (f * g).prefix(i * 2);
264 i *= 2;
265 }
266 f.prefix(deg)
267 }
268 pub fn log(&self, deg: usize) -> Self {
269 (self.inv(deg) * self.clone().diff()).integral().prefix(deg)
270 }
271 pub fn pow(&self, rhs: usize, deg: usize) -> Self {
272 if rhs == 0 {
273 return Self::from_vec(
274 once(T::one())
275 .chain(repeat_with(T::zero))
276 .take(deg)
277 .collect(),
278 );
279 }
280 if let Some(k) = self.iter().position(|x| !x.is_zero()) {
281 if k >= (deg + rhs - 1) / rhs {
282 Self::zeros(deg)
283 } else {
284 let mut x0 = self[k].clone();
285 let rev = T::one() / x0.clone();
286 let x = {
287 let mut x = T::one();
288 let mut y = rhs;
289 while y > 0 {
290 if y & 1 == 1 {
291 x *= x0.clone();
292 }
293 x0 *= x0.clone();
294 y >>= 1;
295 }
296 x
297 };
298 let mut f = (self.clone() * &rev) >> k;
299 f = (f.log(deg) * &T::from(rhs)).exp(deg) * &x;
300 f.truncate(deg - k * rhs);
301 f <<= k * rhs;
302 f
303 }
304 } else {
305 Self::zeros(deg)
306 }
307 }
308}
309
310impl<T, C> FormalPowerSeries<T, C>
311where
312 T: FormalPowerSeriesCoefficientSqrt,
313 C: ConvolveSteps<T = Vec<T>>,
314{
315 pub fn sqrt(&self, deg: usize) -> Option<Self> {
316 if self[0].is_zero() {
317 if let Some(k) = self.iter().position(|x| !x.is_zero()) {
318 if k % 2 != 0 {
319 return None;
320 } else if deg > k / 2 {
321 return Some((self >> k).sqrt(deg - k / 2)? << (k / 2));
322 }
323 }
324 } else {
325 let inv2 = T::one() / (T::one() + T::one());
326 let mut f = Self::from(self[0].sqrt_coefficient()?);
327 let mut i = 1;
328 while i < deg {
329 f = (&f + &(self.prefix_ref(i * 2) * f.inv(i * 2))).prefix(i * 2) * &inv2;
330 i *= 2;
331 }
332 f.truncate(deg);
333 return Some(f);
334 }
335 Some(Self::zeros(deg))
336 }
337}
338
339impl<T, C> FormalPowerSeries<T, C>
340where
341 T: FormalPowerSeriesCoefficient,
342 C: ConvolveSteps<T = Vec<T>>,
343{
344 pub fn count_subset_sum<F>(&self, deg: usize, mut inverse: F) -> Self
345 where
346 F: FnMut(usize) -> T,
347 {
348 let n = self.length();
349 let mut f = Self::zeros(n);
350 for i in 1..n {
351 if !self[i].is_zero() {
352 for (j, d) in (0..n).step_by(i).enumerate().skip(1) {
353 if j & 1 != 0 {
354 f[d] += self[i].clone() * &inverse(j);
355 } else {
356 f[d] -= self[i].clone() * &inverse(j);
357 }
358 }
359 }
360 }
361 f.exp(deg)
362 }
363 pub fn count_multiset_sum<F>(&self, deg: usize, mut inverse: F) -> Self
364 where
365 F: FnMut(usize) -> T,
366 {
367 let n = self.length();
368 let mut f = Self::zeros(n);
369 for i in 1..n {
370 if !self[i].is_zero() {
371 for (j, d) in (0..n).step_by(i).enumerate().skip(1) {
372 f[d] += self[i].clone() * &inverse(j);
373 }
374 }
375 }
376 f.exp(deg)
377 }
378 pub fn bostan_mori(self, rhs: Self, mut n: usize) -> T {
379 let mut p = self;
380 let mut q = rhs;
381 while n > 0 {
382 let mut mq = q.clone();
383 mq.iter_mut()
384 .skip(1)
385 .step_by(2)
386 .for_each(|x| *x = -x.clone());
387 let u = p * mq.clone();
388 p = if n % 2 == 0 { u.even() } else { u.odd() };
389 q = (q * mq).even();
390 n /= 2;
391 }
392 p[0].clone() / q[0].clone()
393 }
394 fn middle_product(self, other: &C::F, deg: usize) -> Self {
395 let n = self.length();
396 let mut s = C::transform(self.reversed().data, deg);
397 C::multiply(&mut s, other);
398 Self::from_vec((C::inverse_transform(s, deg))[n - 1..].to_vec())
399 }
400 pub fn multipoint_evaluation(self, points: &[T]) -> Vec<T> {
401 let n = points.len();
402 if n <= 32 {
403 return points.iter().map(|p| self.eval(p.clone())).collect();
404 }
405 let mut subproduct_tree = Vec::with_capacity(n * 2);
406 subproduct_tree.resize_with(n, Zero::zero);
407 for x in points {
408 subproduct_tree.push(Self::from_vec(vec![-x.clone(), T::one()]));
409 }
410 for i in (1..n).rev() {
411 subproduct_tree[i] = &subproduct_tree[i * 2] * &subproduct_tree[i * 2 + 1];
412 }
413 let mut uptree_t = Vec::with_capacity(n * 2);
414 uptree_t.resize_with(1, Zero::zero);
415 subproduct_tree.reverse();
416 subproduct_tree.pop();
417 let m = self.length();
418 let v = subproduct_tree.pop().unwrap().reversed().resized(m);
419 let s = C::transform(self.data, m * 2);
420 uptree_t.push(v.inv(m).middle_product(&s, m * 2).resized(n).reversed());
421 for i in 1..n {
422 let subl = subproduct_tree.pop().unwrap();
423 let subr = subproduct_tree.pop().unwrap();
424 let (dl, dr) = (subl.length(), subr.length());
425 let len = dl.max(dr) + uptree_t[i].length();
426 let s = C::transform(uptree_t[i].data.to_vec(), len);
427 uptree_t.push(subr.middle_product(&s, len).prefix(dl));
428 uptree_t.push(subl.middle_product(&s, len).prefix(dr));
429 }
430 uptree_t[n..]
431 .iter()
432 .map(|u| u.data.first().cloned().unwrap_or_else(Zero::zero))
433 .collect()
434 }
435 pub fn product_all<I>(iter: I, deg: usize) -> Self
436 where
437 I: IntoIterator<Item = Self>,
438 {
439 let mut heap: BinaryHeap<_> = iter
440 .into_iter()
441 .map(|f| PartialIgnoredOrd(Reverse(f.length()), f))
442 .collect();
443 while let Some(PartialIgnoredOrd(_, x)) = heap.pop() {
444 if let Some(PartialIgnoredOrd(_, y)) = heap.pop() {
445 let z = (x * y).prefix(deg);
446 heap.push(PartialIgnoredOrd(Reverse(z.length()), z));
447 } else {
448 return x;
449 }
450 }
451 Self::one()
452 }
453 pub fn sum_all_rational<I>(iter: I, deg: usize) -> (Self, Self)
454 where
455 I: IntoIterator<Item = (Self, Self)>,
456 {
457 let mut heap: BinaryHeap<_> = iter
458 .into_iter()
459 .map(|(f, g)| PartialIgnoredOrd(Reverse(f.length().max(g.length())), (f, g)))
460 .collect();
461 while let Some(PartialIgnoredOrd(_, (xa, xb))) = heap.pop() {
462 if let Some(PartialIgnoredOrd(_, (ya, yb))) = heap.pop() {
463 let zb = (&xb * &yb).prefix(deg);
464 let za = (xa * yb + ya * xb).prefix(deg);
465 heap.push(PartialIgnoredOrd(
466 Reverse(za.length().max(zb.length())),
467 (za, zb),
468 ));
469 } else {
470 return (xa, xb);
471 }
472 }
473 (Self::zero(), Self::one())
474 }
475 pub fn kth_term_of_linearly_recurrence(self, a: Vec<T>, k: usize) -> T {
476 if let Some(x) = a.get(k) {
477 return x.clone();
478 }
479 let p = (Self::from_vec(a).prefix(self.length() - 1) * &self).prefix(self.length() - 1);
480 p.bostan_mori(self, k)
481 }
482 pub fn kth_term(a: Vec<T>, k: usize) -> T {
483 if let Some(x) = a.get(k) {
484 return x.clone();
485 }
486 Self::from_vec(berlekamp_massey(&a)).kth_term_of_linearly_recurrence(a, k)
487 }
488 pub fn linear_sum_of_exp<I, F>(iter: I, deg: usize, mut inv_fact: F) -> Self
490 where
491 I: IntoIterator<Item = (T, T)>,
492 F: FnMut(usize) -> T,
493 {
494 let (p, q) = Self::sum_all_rational(
495 iter.into_iter()
496 .map(|(a, b)| (Self::from_vec(vec![a]), Self::from_vec(vec![T::one(), -b]))),
497 deg,
498 );
499 let mut f = (p * q.inv(deg)).prefix(deg);
500 for i in 0..f.length() {
501 f[i] *= inv_fact(i);
502 }
503 f
504 }
505}
506
507impl<M, C> FormalPowerSeries<MInt<M>, C>
508where
509 M: MIntConvert<usize>,
510 C: ConvolveSteps<T = Vec<MInt<M>>>,
511{
512 pub fn taylor_shift(mut self, a: MInt<M>, f: &MemorizedFactorial<M>) -> Self {
514 let n = self.length();
515 for i in 0..n {
516 self.data[i] *= f.fact[i];
517 }
518 self.data.reverse();
519 let mut b = a;
520 let mut g = Self::from_vec(f.inv_fact[..n].to_vec());
521 for i in 1..n {
522 g[i] *= b;
523 b *= a;
524 }
525 self *= g;
526 self.truncate(n);
527 self.data.reverse();
528 for i in 0..n {
529 self.data[i] *= f.inv_fact[i];
530 }
531 self
532 }
533}