fn two_sum(a: f64, b: f64) -> (f64, f64)Examples found in repository?
crates/competitive/src/num/double_double.rs (line 63)
62fn three_two_sum(a: f64, b: f64, c: f64) -> (f64, f64) {
63 let (u, v) = two_sum(a, b);
64 let (r0, w) = two_sum(u, c);
65 let r1 = v + w;
66 (r0, r1)
67}
68
69impl Add<f64> for DoubleDouble {
70 type Output = Self;
71 fn add(self, rhs: f64) -> Self::Output {
72 let (t0, e) = two_sum(self.0, rhs);
73 let (t1, t2) = two_sum(self.1, e);
74 Self::renormalize(t0, t1, t2)
75 }
76}
77
78impl Add<DoubleDouble> for DoubleDouble {
79 type Output = Self;
80 fn add(self, rhs: Self) -> Self::Output {
81 let (t0, e) = two_sum(self.0, rhs.0);
82 let (t1, t2) = three_two_sum(self.1, rhs.1, e);
83 Self::renormalize(t0, t1, t2)
84 }
85}
86
87impl Sub for DoubleDouble {
88 type Output = Self;
89 fn sub(self, rhs: Self) -> Self::Output {
90 self + -rhs
91 }
92}
93
94impl Neg for DoubleDouble {
95 type Output = Self;
96 fn neg(self) -> Self::Output {
97 Self(-self.0, -self.1)
98 }
99}
100
101impl Mul<f64> for DoubleDouble {
102 type Output = Self;
103 fn mul(self, rhs: f64) -> Self::Output {
104 let (t0, e0) = two_prod(self.0, rhs);
105 let p1 = self.1 * rhs;
106 let (t1, t2) = two_sum(p1, e0);
107 Self::renormalize(t0, t1, t2)
108 }